; RUN: opt -loop-vectorize -scalable-vectorization=on -force-target-instruction-cost=1 -force-target-supports-scalable-vectors -dce -instcombine < %s -S | FileCheck %s ; Test that we can add on the induction variable ; for (long long i = 0; i < n; i++) { ; a[i] = b[i] + i; ; } ; with an unroll factor (interleave count) of 2. define void @add_ind64_unrolled(i64* noalias nocapture %a, i64* noalias nocapture readonly %b, i64 %n) { ; CHECK-LABEL: @add_ind64_unrolled( ; CHECK-NEXT: entry: ; CHECK: vector.body: ; CHECK-NEXT: %[[INDEX:.*]] = phi i64 [ 0, %vector.ph ], [ %{{.*}}, %vector.body ] ; CHECK-NEXT: %[[STEPVEC:.*]] = call @llvm.experimental.stepvector.nxv2i64() ; CHECK-NEXT: %[[TMP1:.*]] = insertelement poison, i64 %[[INDEX]], i32 0 ; CHECK-NEXT: %[[IDXSPLT:.*]] = shufflevector %[[TMP1]], poison, zeroinitializer ; CHECK-NEXT: %[[VECIND1:.*]] = add %[[IDXSPLT]], %[[STEPVEC]] ; CHECK-NEXT: %[[VSCALE:.*]] = call i64 @llvm.vscale.i64() ; CHECK-NEXT: %[[EC:.*]] = shl i64 %[[VSCALE]], 1 ; CHECK-NEXT: %[[TMP2:.*]] = insertelement poison, i64 %[[EC]], i32 0 ; CHECK-NEXT: %[[ECSPLT:.*]] = shufflevector %[[TMP2]], poison, zeroinitializer ; CHECK-NEXT: %[[TMP3:.*]] = add %[[ECSPLT]], %[[STEPVEC]] ; CHECK-NEXT: %[[VECIND2:.*]] = add %[[IDXSPLT]], %[[TMP3]] ; CHECK: %[[LOAD1:.*]] = load ; CHECK: %[[LOAD2:.*]] = load ; CHECK: %[[STOREVAL1:.*]] = add nsw %[[LOAD1]], %[[VECIND1]] ; CHECK: %[[STOREVAL2:.*]] = add nsw %[[LOAD2]], %[[VECIND2]] ; CHECK: store %[[STOREVAL1]] ; CHECK: store %[[STOREVAL2]] entry: br label %for.body for.body: ; preds = %entry, %for.body %i.08 = phi i64 [ %inc, %for.body ], [ 0, %entry ] %arrayidx = getelementptr inbounds i64, i64* %b, i64 %i.08 %0 = load i64, i64* %arrayidx, align 8 %add = add nsw i64 %0, %i.08 %arrayidx1 = getelementptr inbounds i64, i64* %a, i64 %i.08 store i64 %add, i64* %arrayidx1, align 8 %inc = add nuw nsw i64 %i.08, 1 %exitcond.not = icmp eq i64 %inc, %n br i1 %exitcond.not, label %exit, label %for.body, !llvm.loop !0 exit: ; preds = %for.body ret void } ; Same as above, except we test with a vectorisation factor of (1, scalable) define void @add_ind64_unrolled_nxv1i64(i64* noalias nocapture %a, i64* noalias nocapture readonly %b, i64 %n) { ; CHECK-LABEL: @add_ind64_unrolled_nxv1i64( ; CHECK-NEXT: entry: ; CHECK: vector.body: ; CHECK-NEXT: %[[INDEX:.*]] = phi i64 [ 0, %vector.ph ], [ %{{.*}}, %vector.body ] ; CHECK-NEXT: %[[STEPVEC:.*]] = call @llvm.experimental.stepvector.nxv1i64() ; CHECK-NEXT: %[[TMP1:.*]] = insertelement poison, i64 %[[INDEX]], i32 0 ; CHECK-NEXT: %[[IDXSPLT:.*]] = shufflevector %[[TMP1]], poison, zeroinitializer ; CHECK-NEXT: %[[VECIND1:.*]] = add %[[IDXSPLT]], %[[STEPVEC]] ; CHECK-NEXT: %[[EC:.*]] = call i64 @llvm.vscale.i64() ; CHECK-NEXT: %[[TMP2:.*]] = insertelement poison, i64 %[[EC]], i32 0 ; CHECK-NEXT: %[[ECSPLT:.*]] = shufflevector %[[TMP2]], poison, zeroinitializer ; CHECK-NEXT: %[[TMP3:.*]] = add %[[ECSPLT]], %[[STEPVEC]] ; CHECK-NEXT: %[[VECIND2:.*]] = add %[[IDXSPLT]], %[[TMP3]] ; CHECK: %[[LOAD1:.*]] = load ; CHECK: %[[LOAD2:.*]] = load ; CHECK: %[[STOREVAL1:.*]] = add nsw %[[LOAD1]], %[[VECIND1]] ; CHECK: %[[STOREVAL2:.*]] = add nsw %[[LOAD2]], %[[VECIND2]] ; CHECK: store %[[STOREVAL1]] ; CHECK: store %[[STOREVAL2]] entry: br label %for.body for.body: ; preds = %entry, %for.body %i.08 = phi i64 [ %inc, %for.body ], [ 0, %entry ] %arrayidx = getelementptr inbounds i64, i64* %b, i64 %i.08 %0 = load i64, i64* %arrayidx, align 8 %add = add nsw i64 %0, %i.08 %arrayidx1 = getelementptr inbounds i64, i64* %a, i64 %i.08 store i64 %add, i64* %arrayidx1, align 8 %inc = add nuw nsw i64 %i.08, 1 %exitcond.not = icmp eq i64 %inc, %n br i1 %exitcond.not, label %exit, label %for.body, !llvm.loop !9 exit: ; preds = %for.body ret void } ; Test that we can vectorize a separate induction variable (not used for the branch) ; int r = 0; ; for (long long i = 0; i < n; i++) { ; a[i] = r; ; r += 2; ; } ; with an unroll factor (interleave count) of 1. define void @add_unique_ind32(i32* noalias nocapture %a, i64 %n) { ; CHECK-LABEL: @add_unique_ind32( ; CHECK: vector.ph: ; CHECK: %[[STEPVEC:.*]] = call @llvm.experimental.stepvector.nxv4i32() ; CHECK-NEXT: %[[INDINIT:.*]] = shl %[[STEPVEC]], shufflevector ( insertelement ( poison, i32 1, i32 0), poison, zeroinitializer) ; CHECK-NEXT: %[[VSCALE:.*]] = call i32 @llvm.vscale.i32() ; CHECK-NEXT: %[[INC:.*]] = shl i32 %[[VSCALE]], 3 ; CHECK-NEXT: %[[TMP:.*]] = insertelement poison, i32 %[[INC]], i32 0 ; CHECK-NEXT: %[[VECINC:.*]] = shufflevector %[[TMP]], poison, zeroinitializer ; CHECK: vector.body: ; CHECK: %[[VECIND:.*]] = phi [ %[[INDINIT]], %vector.ph ], [ %[[VECINDNXT:.*]], %vector.body ] ; CHECK: store %[[VECIND]] ; CHECK: %[[VECINDNXT]] = add %[[VECIND]], %[[VECINC]] entry: br label %for.body for.body: ; preds = %entry, %for.body %i.08 = phi i64 [ %inc, %for.body ], [ 0, %entry ] %r.07 = phi i32 [ %add, %for.body ], [ 0, %entry ] %arrayidx = getelementptr inbounds i32, i32* %a, i64 %i.08 store i32 %r.07, i32* %arrayidx, align 4 %add = add nuw nsw i32 %r.07, 2 %inc = add nuw nsw i64 %i.08, 1 %exitcond.not = icmp eq i64 %inc, %n br i1 %exitcond.not, label %exit, label %for.body, !llvm.loop !6 exit: ; preds = %for.body ret void } ; Test that we can vectorize a separate FP induction variable (not used for the branch) ; float r = 0; ; for (long long i = 0; i < n; i++) { ; a[i] = r; ; r += 2; ; } ; with an unroll factor (interleave count) of 1. define void @add_unique_indf32(float* noalias nocapture %a, i64 %n) { ; CHECK-LABEL: @add_unique_indf32( ; CHECK: vector.ph: ; CHECK: %[[STEPVEC:.*]] = call @llvm.experimental.stepvector.nxv4i32() ; CHECK-NEXT: %[[TMP1:.*]] = uitofp %[[STEPVEC]] to ; CHECK-NEXT: %[[TMP2:.*]] = fmul %[[TMP1]], shufflevector ( insertelement ( poison, float 2.000000e+00, i32 0), poison, zeroinitializer) ; CHECK-NEXT: %[[INDINIT:.*]] = fadd %[[TMP2]], shufflevector ( insertelement ( poison, float 0.000000e+00, i32 0), poison, zeroinitializer) ; CHECK-NEXT: %[[VSCALE:.*]] = call i32 @llvm.vscale.i32() ; CHECK-NEXT: %[[TMP3:.*]] = shl i32 %8, 2 ; CHECK-NEXT: %[[TMP4:.*]] = sitofp i32 %[[TMP3]] to float ; CHECK-NEXT: %[[INC:.*]] = fmul float %[[TMP4]], 2.000000e+00 ; CHECK-NEXT: %[[TMP5:.*]] = insertelement poison, float %[[INC]], i32 0 ; CHECK-NEXT: %[[VECINC:.*]] = shufflevector %[[TMP5]], poison, zeroinitializer ; CHECK: vector.body: ; CHECK: %[[VECIND:.*]] = phi [ %[[INDINIT]], %vector.ph ], [ %[[VECINDNXT:.*]], %vector.body ] ; CHECK: store %[[VECIND]] ; CHECK: %[[VECINDNXT]] = fadd %[[VECIND]], %[[VECINC]] entry: br label %for.body for.body: ; preds = %entry, %for.body %i.08 = phi i64 [ %inc, %for.body ], [ 0, %entry ] %r.07 = phi float [ %add, %for.body ], [ 0.000000e+00, %entry ] %arrayidx = getelementptr inbounds float, float* %a, i64 %i.08 store float %r.07, float* %arrayidx, align 4 %add = fadd float %r.07, 2.000000e+00 %inc = add nuw nsw i64 %i.08, 1 %exitcond.not = icmp eq i64 %inc, %n br i1 %exitcond.not, label %exit, label %for.body, !llvm.loop !6 exit: ; preds = %for.body ret void } !0 = distinct !{!0, !1, !2, !3, !4, !5} !1 = !{!"llvm.loop.mustprogress"} !2 = !{!"llvm.loop.vectorize.width", i32 2} !3 = !{!"llvm.loop.vectorize.scalable.enable", i1 true} !4 = !{!"llvm.loop.interleave.count", i32 2} !5 = !{!"llvm.loop.vectorize.enable", i1 true} !6 = distinct !{!6, !1, !7, !3, !8, !5} !7 = !{!"llvm.loop.vectorize.width", i32 4} !8 = !{!"llvm.loop.interleave.count", i32 1} !9 = distinct !{!9, !1, !10, !3, !4, !5} !10 = !{!"llvm.loop.vectorize.width", i32 1}