//===- StandardToSPIRV.cpp - Standard to SPIR-V Patterns ------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements patterns to convert standard dialect to SPIR-V dialect. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h" #include "mlir/Dialect/SPIRV/IR/SPIRVOps.h" #include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h" #include "mlir/Dialect/SPIRV/Utils/LayoutUtils.h" #include "mlir/Dialect/StandardOps/IR/Ops.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/AffineMap.h" #include "mlir/Support/LogicalResult.h" #include "llvm/ADT/SetVector.h" #include "llvm/Support/Debug.h" #define DEBUG_TYPE "std-to-spirv-pattern" using namespace mlir; //===----------------------------------------------------------------------===// // Utility functions //===----------------------------------------------------------------------===// /// Returns true if the given `type` is a boolean scalar or vector type. static bool isBoolScalarOrVector(Type type) { if (type.isInteger(1)) return true; if (auto vecType = type.dyn_cast()) return vecType.getElementType().isInteger(1); return false; } /// Converts the given `srcAttr` into a boolean attribute if it holds an /// integral value. Returns null attribute if conversion fails. static BoolAttr convertBoolAttr(Attribute srcAttr, Builder builder) { if (auto boolAttr = srcAttr.dyn_cast()) return boolAttr; if (auto intAttr = srcAttr.dyn_cast()) return builder.getBoolAttr(intAttr.getValue().getBoolValue()); return BoolAttr(); } /// Converts the given `srcAttr` to a new attribute of the given `dstType`. /// Returns null attribute if conversion fails. static IntegerAttr convertIntegerAttr(IntegerAttr srcAttr, IntegerType dstType, Builder builder) { // If the source number uses less active bits than the target bitwidth, then // it should be safe to convert. if (srcAttr.getValue().isIntN(dstType.getWidth())) return builder.getIntegerAttr(dstType, srcAttr.getInt()); // XXX: Try again by interpreting the source number as a signed value. // Although integers in the standard dialect are signless, they can represent // a signed number. It's the operation decides how to interpret. This is // dangerous, but it seems there is no good way of handling this if we still // want to change the bitwidth. Emit a message at least. if (srcAttr.getValue().isSignedIntN(dstType.getWidth())) { auto dstAttr = builder.getIntegerAttr(dstType, srcAttr.getInt()); LLVM_DEBUG(llvm::dbgs() << "attribute '" << srcAttr << "' converted to '" << dstAttr << "' for type '" << dstType << "'\n"); return dstAttr; } LLVM_DEBUG(llvm::dbgs() << "attribute '" << srcAttr << "' illegal: cannot fit into target type '" << dstType << "'\n"); return IntegerAttr(); } /// Converts the given `srcAttr` to a new attribute of the given `dstType`. /// Returns null attribute if `dstType` is not 32-bit or conversion fails. static FloatAttr convertFloatAttr(FloatAttr srcAttr, FloatType dstType, Builder builder) { // Only support converting to float for now. if (!dstType.isF32()) return FloatAttr(); // Try to convert the source floating-point number to single precision. APFloat dstVal = srcAttr.getValue(); bool losesInfo = false; APFloat::opStatus status = dstVal.convert(APFloat::IEEEsingle(), APFloat::rmTowardZero, &losesInfo); if (status != APFloat::opOK || losesInfo) { LLVM_DEBUG(llvm::dbgs() << srcAttr << " illegal: cannot fit into converted type '" << dstType << "'\n"); return FloatAttr(); } return builder.getF32FloatAttr(dstVal.convertToFloat()); } /// Returns signed remainder for `lhs` and `rhs` and lets the result follow /// the sign of `signOperand`. /// /// Note that this is needed for Vulkan. Per the Vulkan's SPIR-V environment /// spec, "for the OpSRem and OpSMod instructions, if either operand is negative /// the result is undefined." So we cannot directly use spv.SRem/spv.SMod /// if either operand can be negative. Emulate it via spv.UMod. static Value emulateSignedRemainder(Location loc, Value lhs, Value rhs, Value signOperand, OpBuilder &builder) { assert(lhs.getType() == rhs.getType()); assert(lhs == signOperand || rhs == signOperand); Type type = lhs.getType(); // Calculate the remainder with spv.UMod. Value lhsAbs = builder.create(loc, type, lhs); Value rhsAbs = builder.create(loc, type, rhs); Value abs = builder.create(loc, lhsAbs, rhsAbs); // Fix the sign. Value isPositive; if (lhs == signOperand) isPositive = builder.create(loc, lhs, lhsAbs); else isPositive = builder.create(loc, rhs, rhsAbs); Value absNegate = builder.create(loc, type, abs); return builder.create(loc, type, isPositive, abs, absNegate); } //===----------------------------------------------------------------------===// // Operation conversion //===----------------------------------------------------------------------===// // Note that DRR cannot be used for the patterns in this file: we may need to // convert type along the way, which requires ConversionPattern. DRR generates // normal RewritePattern. namespace { /// Converts unary and binary standard operations to SPIR-V operations. template class UnaryAndBinaryOpPattern final : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(StdOp operation, ArrayRef operands, ConversionPatternRewriter &rewriter) const override { assert(operands.size() <= 2); auto dstType = this->getTypeConverter()->convertType(operation.getType()); if (!dstType) return failure(); if (SPIRVOp::template hasTrait() && dstType != operation.getType()) { return operation.emitError( "bitwidth emulation is not implemented yet on unsigned op"); } rewriter.template replaceOpWithNewOp(operation, dstType, operands); return success(); } }; /// Converts std.remi_signed to SPIR-V ops. /// /// This cannot be merged into the template unary/binary pattern due to /// Vulkan restrictions over spv.SRem and spv.SMod. class SignedRemIOpPattern final : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(SignedRemIOp remOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const override; }; /// Converts bitwise standard operations to SPIR-V operations. This is a special /// pattern other than the BinaryOpPatternPattern because if the operands are /// boolean values, SPIR-V uses different operations (`SPIRVLogicalOp`). For /// non-boolean operands, SPIR-V should use `SPIRVBitwiseOp`. template class BitwiseOpPattern final : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(StdOp operation, ArrayRef operands, ConversionPatternRewriter &rewriter) const override { assert(operands.size() == 2); auto dstType = this->getTypeConverter()->convertType(operation.getResult().getType()); if (!dstType) return failure(); if (isBoolScalarOrVector(operands.front().getType())) { rewriter.template replaceOpWithNewOp(operation, dstType, operands); } else { rewriter.template replaceOpWithNewOp(operation, dstType, operands); } return success(); } }; /// Converts composite std.constant operation to spv.Constant. class ConstantCompositeOpPattern final : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(ConstantOp constOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const override; }; /// Converts scalar std.constant operation to spv.Constant. class ConstantScalarOpPattern final : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(ConstantOp constOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const override; }; /// Converts floating-point comparison operations to SPIR-V ops. class CmpFOpPattern final : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(CmpFOp cmpFOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const override; }; /// Converts floating point NaN check to SPIR-V ops. This pattern requires /// Kernel capability. class CmpFOpNanKernelPattern final : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(CmpFOp cmpFOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const override; }; /// Converts floating point NaN check to SPIR-V ops. This pattern does not /// require additional capability. class CmpFOpNanNonePattern final : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(CmpFOp cmpFOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const override; }; /// Converts integer compare operation on i1 type operands to SPIR-V ops. class BoolCmpIOpPattern final : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(CmpIOp cmpIOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const override; }; /// Converts integer compare operation to SPIR-V ops. class CmpIOpPattern final : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(CmpIOp cmpIOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const override; }; /// Converts std.return to spv.Return. class ReturnOpPattern final : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(ReturnOp returnOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const override; }; /// Converts std.select to spv.Select. class SelectOpPattern final : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(SelectOp op, ArrayRef operands, ConversionPatternRewriter &rewriter) const override; }; /// Converts std.splat to spv.CompositeConstruct. class SplatPattern final : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(SplatOp op, ArrayRef operands, ConversionPatternRewriter &rewriter) const override; }; /// Converts std.zexti to spv.Select if the type of source is i1 or vector of /// i1. class ZeroExtendI1Pattern final : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(ZeroExtendIOp op, ArrayRef operands, ConversionPatternRewriter &rewriter) const override { auto srcType = operands.front().getType(); if (!isBoolScalarOrVector(srcType)) return failure(); auto dstType = this->getTypeConverter()->convertType(op.getResult().getType()); Location loc = op.getLoc(); Value zero = spirv::ConstantOp::getZero(dstType, loc, rewriter); Value one = spirv::ConstantOp::getOne(dstType, loc, rewriter); rewriter.template replaceOpWithNewOp( op, dstType, operands.front(), one, zero); return success(); } }; /// Converts tensor.extract into loading using access chains from SPIR-V local /// variables. class TensorExtractPattern final : public OpConversionPattern { public: TensorExtractPattern(TypeConverter &typeConverter, MLIRContext *context, int64_t threshold, PatternBenefit benefit = 1) : OpConversionPattern(typeConverter, context, benefit), byteCountThreshold(threshold) {} LogicalResult matchAndRewrite(tensor::ExtractOp extractOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const override { TensorType tensorType = extractOp.tensor().getType().cast(); if (!tensorType.hasStaticShape()) return rewriter.notifyMatchFailure(extractOp, "non-static tensor"); if (tensorType.getNumElements() * tensorType.getElementTypeBitWidth() > byteCountThreshold * 8) return rewriter.notifyMatchFailure(extractOp, "exceeding byte count threshold"); Location loc = extractOp.getLoc(); tensor::ExtractOp::Adaptor adaptor(operands); int64_t rank = tensorType.getRank(); SmallVector strides(rank, 1); for (int i = rank - 2; i >= 0; --i) { strides[i] = strides[i + 1] * tensorType.getDimSize(i + 1); } Type varType = spirv::PointerType::get(adaptor.tensor().getType(), spirv::StorageClass::Function); spirv::VariableOp varOp; if (adaptor.tensor().getDefiningOp()) { varOp = rewriter.create( loc, varType, spirv::StorageClass::Function, /*initializer=*/adaptor.tensor()); } else { // Need to store the value to the local variable. It's questionable // whether we want to support such case though. return failure(); } auto &typeConverter = *getTypeConverter(); auto indexType = typeConverter.getIndexType(); Value index = spirv::linearizeIndex(adaptor.indices(), strides, /*offset=*/0, indexType, loc, rewriter); auto acOp = rewriter.create(loc, varOp, index); rewriter.replaceOpWithNewOp(extractOp, acOp); return success(); } private: int64_t byteCountThreshold; }; /// Converts std.trunci to spv.Select if the type of result is i1 or vector of /// i1. class TruncI1Pattern final : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(TruncateIOp op, ArrayRef operands, ConversionPatternRewriter &rewriter) const override { auto dstType = this->getTypeConverter()->convertType(op.getResult().getType()); if (!isBoolScalarOrVector(dstType)) return failure(); Location loc = op.getLoc(); auto srcType = operands.front().getType(); // Check if (x & 1) == 1. Value mask = spirv::ConstantOp::getOne(srcType, loc, rewriter); Value maskedSrc = rewriter.create(loc, srcType, operands[0], mask); Value isOne = rewriter.create(loc, maskedSrc, mask); Value zero = spirv::ConstantOp::getZero(dstType, loc, rewriter); Value one = spirv::ConstantOp::getOne(dstType, loc, rewriter); rewriter.replaceOpWithNewOp(op, dstType, isOne, one, zero); return success(); } }; /// Converts std.uitofp to spv.Select if the type of source is i1 or vector of /// i1. class UIToFPI1Pattern final : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(UIToFPOp op, ArrayRef operands, ConversionPatternRewriter &rewriter) const override { auto srcType = operands.front().getType(); if (!isBoolScalarOrVector(srcType)) return failure(); auto dstType = this->getTypeConverter()->convertType(op.getResult().getType()); Location loc = op.getLoc(); Value zero = spirv::ConstantOp::getZero(dstType, loc, rewriter); Value one = spirv::ConstantOp::getOne(dstType, loc, rewriter); rewriter.template replaceOpWithNewOp( op, dstType, operands.front(), one, zero); return success(); } }; /// Converts type-casting standard operations to SPIR-V operations. template class TypeCastingOpPattern final : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(StdOp operation, ArrayRef operands, ConversionPatternRewriter &rewriter) const override { assert(operands.size() == 1); auto srcType = operands.front().getType(); auto dstType = this->getTypeConverter()->convertType(operation.getResult().getType()); if (isBoolScalarOrVector(srcType) || isBoolScalarOrVector(dstType)) return failure(); if (dstType == srcType) { // Due to type conversion, we are seeing the same source and target type. // Then we can just erase this operation by forwarding its operand. rewriter.replaceOp(operation, operands.front()); } else { rewriter.template replaceOpWithNewOp(operation, dstType, operands); } return success(); } }; /// Converts std.xor to SPIR-V operations. class XOrOpPattern final : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(XOrOp xorOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const override; }; /// Converts std.xor to SPIR-V operations if the type of source is i1 or vector /// of i1. class BoolXOrOpPattern final : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(XOrOp xorOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const override; }; } // namespace //===----------------------------------------------------------------------===// // SignedRemIOpPattern //===----------------------------------------------------------------------===// LogicalResult SignedRemIOpPattern::matchAndRewrite( SignedRemIOp remOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const { Value result = emulateSignedRemainder(remOp.getLoc(), operands[0], operands[1], operands[0], rewriter); rewriter.replaceOp(remOp, result); return success(); } //===----------------------------------------------------------------------===// // ConstantOp with composite type. //===----------------------------------------------------------------------===// // TODO: This probably should be split into the vector case and tensor case, // so that the tensor case can be moved to TensorToSPIRV conversion. But, // std.constant is for the standard dialect though. LogicalResult ConstantCompositeOpPattern::matchAndRewrite( ConstantOp constOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const { auto srcType = constOp.getType().dyn_cast(); if (!srcType) return failure(); // std.constant should only have vector or tenor types. assert((srcType.isa())); auto dstType = getTypeConverter()->convertType(srcType); if (!dstType) return failure(); auto dstElementsAttr = constOp.value().dyn_cast(); ShapedType dstAttrType = dstElementsAttr.getType(); if (!dstElementsAttr) return failure(); // If the composite type has more than one dimensions, perform linearization. if (srcType.getRank() > 1) { if (srcType.isa()) { dstAttrType = RankedTensorType::get(srcType.getNumElements(), srcType.getElementType()); dstElementsAttr = dstElementsAttr.reshape(dstAttrType); } else { // TODO: add support for large vectors. return failure(); } } Type srcElemType = srcType.getElementType(); Type dstElemType; // Tensor types are converted to SPIR-V array types; vector types are // converted to SPIR-V vector/array types. if (auto arrayType = dstType.dyn_cast()) dstElemType = arrayType.getElementType(); else dstElemType = dstType.cast().getElementType(); // If the source and destination element types are different, perform // attribute conversion. if (srcElemType != dstElemType) { SmallVector elements; if (srcElemType.isa()) { for (Attribute srcAttr : dstElementsAttr.getAttributeValues()) { FloatAttr dstAttr = convertFloatAttr( srcAttr.cast(), dstElemType.cast(), rewriter); if (!dstAttr) return failure(); elements.push_back(dstAttr); } } else if (srcElemType.isInteger(1)) { return failure(); } else { for (Attribute srcAttr : dstElementsAttr.getAttributeValues()) { IntegerAttr dstAttr = convertIntegerAttr(srcAttr.cast(), dstElemType.cast(), rewriter); if (!dstAttr) return failure(); elements.push_back(dstAttr); } } // Unfortunately, we cannot use dialect-specific types for element // attributes; element attributes only works with builtin types. So we need // to prepare another converted builtin types for the destination elements // attribute. if (dstAttrType.isa()) dstAttrType = RankedTensorType::get(dstAttrType.getShape(), dstElemType); else dstAttrType = VectorType::get(dstAttrType.getShape(), dstElemType); dstElementsAttr = DenseElementsAttr::get(dstAttrType, elements); } rewriter.replaceOpWithNewOp(constOp, dstType, dstElementsAttr); return success(); } //===----------------------------------------------------------------------===// // ConstantOp with scalar type. //===----------------------------------------------------------------------===// LogicalResult ConstantScalarOpPattern::matchAndRewrite( ConstantOp constOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const { Type srcType = constOp.getType(); if (!srcType.isIntOrIndexOrFloat()) return failure(); Type dstType = getTypeConverter()->convertType(srcType); if (!dstType) return failure(); // Floating-point types. if (srcType.isa()) { auto srcAttr = constOp.value().cast(); auto dstAttr = srcAttr; // Floating-point types not supported in the target environment are all // converted to float type. if (srcType != dstType) { dstAttr = convertFloatAttr(srcAttr, dstType.cast(), rewriter); if (!dstAttr) return failure(); } rewriter.replaceOpWithNewOp(constOp, dstType, dstAttr); return success(); } // Bool type. if (srcType.isInteger(1)) { // std.constant can use 0/1 instead of true/false for i1 values. We need to // handle that here. auto dstAttr = convertBoolAttr(constOp.value(), rewriter); if (!dstAttr) return failure(); rewriter.replaceOpWithNewOp(constOp, dstType, dstAttr); return success(); } // IndexType or IntegerType. Index values are converted to 32-bit integer // values when converting to SPIR-V. auto srcAttr = constOp.value().cast(); auto dstAttr = convertIntegerAttr(srcAttr, dstType.cast(), rewriter); if (!dstAttr) return failure(); rewriter.replaceOpWithNewOp(constOp, dstType, dstAttr); return success(); } //===----------------------------------------------------------------------===// // CmpFOp //===----------------------------------------------------------------------===// LogicalResult CmpFOpPattern::matchAndRewrite(CmpFOp cmpFOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const { CmpFOpAdaptor cmpFOpOperands(operands); switch (cmpFOp.getPredicate()) { #define DISPATCH(cmpPredicate, spirvOp) \ case cmpPredicate: \ rewriter.replaceOpWithNewOp(cmpFOp, cmpFOp.getResult().getType(), \ cmpFOpOperands.lhs(), \ cmpFOpOperands.rhs()); \ return success(); // Ordered. DISPATCH(CmpFPredicate::OEQ, spirv::FOrdEqualOp); DISPATCH(CmpFPredicate::OGT, spirv::FOrdGreaterThanOp); DISPATCH(CmpFPredicate::OGE, spirv::FOrdGreaterThanEqualOp); DISPATCH(CmpFPredicate::OLT, spirv::FOrdLessThanOp); DISPATCH(CmpFPredicate::OLE, spirv::FOrdLessThanEqualOp); DISPATCH(CmpFPredicate::ONE, spirv::FOrdNotEqualOp); // Unordered. DISPATCH(CmpFPredicate::UEQ, spirv::FUnordEqualOp); DISPATCH(CmpFPredicate::UGT, spirv::FUnordGreaterThanOp); DISPATCH(CmpFPredicate::UGE, spirv::FUnordGreaterThanEqualOp); DISPATCH(CmpFPredicate::ULT, spirv::FUnordLessThanOp); DISPATCH(CmpFPredicate::ULE, spirv::FUnordLessThanEqualOp); DISPATCH(CmpFPredicate::UNE, spirv::FUnordNotEqualOp); #undef DISPATCH default: break; } return failure(); } LogicalResult CmpFOpNanKernelPattern::matchAndRewrite( CmpFOp cmpFOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const { CmpFOpAdaptor cmpFOpOperands(operands); if (cmpFOp.getPredicate() == CmpFPredicate::ORD) { rewriter.replaceOpWithNewOp(cmpFOp, cmpFOpOperands.lhs(), cmpFOpOperands.rhs()); return success(); } if (cmpFOp.getPredicate() == CmpFPredicate::UNO) { rewriter.replaceOpWithNewOp( cmpFOp, cmpFOpOperands.lhs(), cmpFOpOperands.rhs()); return success(); } return failure(); } LogicalResult CmpFOpNanNonePattern::matchAndRewrite( CmpFOp cmpFOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const { if (cmpFOp.getPredicate() != CmpFPredicate::ORD && cmpFOp.getPredicate() != CmpFPredicate::UNO) return failure(); CmpFOpAdaptor cmpFOpOperands(operands); Location loc = cmpFOp.getLoc(); Value lhsIsNan = rewriter.create(loc, cmpFOpOperands.lhs()); Value rhsIsNan = rewriter.create(loc, cmpFOpOperands.rhs()); Value replace = rewriter.create(loc, lhsIsNan, rhsIsNan); if (cmpFOp.getPredicate() == CmpFPredicate::ORD) replace = rewriter.create(loc, replace); rewriter.replaceOp(cmpFOp, replace); return success(); } //===----------------------------------------------------------------------===// // CmpIOp //===----------------------------------------------------------------------===// LogicalResult BoolCmpIOpPattern::matchAndRewrite(CmpIOp cmpIOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const { CmpIOpAdaptor cmpIOpOperands(operands); Type operandType = cmpIOp.lhs().getType(); if (!isBoolScalarOrVector(operandType)) return failure(); switch (cmpIOp.getPredicate()) { #define DISPATCH(cmpPredicate, spirvOp) \ case cmpPredicate: \ rewriter.replaceOpWithNewOp(cmpIOp, cmpIOp.getResult().getType(), \ cmpIOpOperands.lhs(), \ cmpIOpOperands.rhs()); \ return success(); DISPATCH(CmpIPredicate::eq, spirv::LogicalEqualOp); DISPATCH(CmpIPredicate::ne, spirv::LogicalNotEqualOp); #undef DISPATCH default:; } return failure(); } LogicalResult CmpIOpPattern::matchAndRewrite(CmpIOp cmpIOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const { CmpIOpAdaptor cmpIOpOperands(operands); Type operandType = cmpIOp.lhs().getType(); if (isBoolScalarOrVector(operandType)) return failure(); switch (cmpIOp.getPredicate()) { #define DISPATCH(cmpPredicate, spirvOp) \ case cmpPredicate: \ if (spirvOp::template hasTrait() && \ operandType != this->getTypeConverter()->convertType(operandType)) { \ return cmpIOp.emitError( \ "bitwidth emulation is not implemented yet on unsigned op"); \ } \ rewriter.replaceOpWithNewOp(cmpIOp, cmpIOp.getResult().getType(), \ cmpIOpOperands.lhs(), \ cmpIOpOperands.rhs()); \ return success(); DISPATCH(CmpIPredicate::eq, spirv::IEqualOp); DISPATCH(CmpIPredicate::ne, spirv::INotEqualOp); DISPATCH(CmpIPredicate::slt, spirv::SLessThanOp); DISPATCH(CmpIPredicate::sle, spirv::SLessThanEqualOp); DISPATCH(CmpIPredicate::sgt, spirv::SGreaterThanOp); DISPATCH(CmpIPredicate::sge, spirv::SGreaterThanEqualOp); DISPATCH(CmpIPredicate::ult, spirv::ULessThanOp); DISPATCH(CmpIPredicate::ule, spirv::ULessThanEqualOp); DISPATCH(CmpIPredicate::ugt, spirv::UGreaterThanOp); DISPATCH(CmpIPredicate::uge, spirv::UGreaterThanEqualOp); #undef DISPATCH } return failure(); } //===----------------------------------------------------------------------===// // ReturnOp //===----------------------------------------------------------------------===// LogicalResult ReturnOpPattern::matchAndRewrite(ReturnOp returnOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const { if (returnOp.getNumOperands() > 1) return failure(); if (returnOp.getNumOperands() == 1) { rewriter.replaceOpWithNewOp(returnOp, operands[0]); } else { rewriter.replaceOpWithNewOp(returnOp); } return success(); } //===----------------------------------------------------------------------===// // SelectOp //===----------------------------------------------------------------------===// LogicalResult SelectOpPattern::matchAndRewrite(SelectOp op, ArrayRef operands, ConversionPatternRewriter &rewriter) const { SelectOpAdaptor selectOperands(operands); rewriter.replaceOpWithNewOp(op, selectOperands.condition(), selectOperands.true_value(), selectOperands.false_value()); return success(); } //===----------------------------------------------------------------------===// // SplatOp //===----------------------------------------------------------------------===// LogicalResult SplatPattern::matchAndRewrite(SplatOp op, ArrayRef operands, ConversionPatternRewriter &rewriter) const { auto dstVecType = op.getType().dyn_cast(); if (!dstVecType || !spirv::CompositeType::isValid(dstVecType)) return failure(); SplatOp::Adaptor adaptor(operands); SmallVector source(dstVecType.getNumElements(), adaptor.input()); rewriter.replaceOpWithNewOp(op, dstVecType, source); return success(); } //===----------------------------------------------------------------------===// // XorOp //===----------------------------------------------------------------------===// LogicalResult XOrOpPattern::matchAndRewrite(XOrOp xorOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const { assert(operands.size() == 2); if (isBoolScalarOrVector(operands.front().getType())) return failure(); auto dstType = getTypeConverter()->convertType(xorOp.getType()); if (!dstType) return failure(); rewriter.replaceOpWithNewOp(xorOp, dstType, operands); return success(); } LogicalResult BoolXOrOpPattern::matchAndRewrite(XOrOp xorOp, ArrayRef operands, ConversionPatternRewriter &rewriter) const { assert(operands.size() == 2); if (!isBoolScalarOrVector(operands.front().getType())) return failure(); auto dstType = getTypeConverter()->convertType(xorOp.getType()); if (!dstType) return failure(); rewriter.replaceOpWithNewOp(xorOp, dstType, operands); return success(); } //===----------------------------------------------------------------------===// // Pattern population //===----------------------------------------------------------------------===// namespace mlir { void populateStandardToSPIRVPatterns(SPIRVTypeConverter &typeConverter, RewritePatternSet &patterns) { MLIRContext *context = patterns.getContext(); patterns.add< // Unary and binary patterns BitwiseOpPattern, BitwiseOpPattern, UnaryAndBinaryOpPattern, UnaryAndBinaryOpPattern, UnaryAndBinaryOpPattern, UnaryAndBinaryOpPattern, UnaryAndBinaryOpPattern, UnaryAndBinaryOpPattern, UnaryAndBinaryOpPattern, UnaryAndBinaryOpPattern, UnaryAndBinaryOpPattern, UnaryAndBinaryOpPattern, UnaryAndBinaryOpPattern, UnaryAndBinaryOpPattern, UnaryAndBinaryOpPattern, UnaryAndBinaryOpPattern, UnaryAndBinaryOpPattern, UnaryAndBinaryOpPattern, UnaryAndBinaryOpPattern, UnaryAndBinaryOpPattern, SignedRemIOpPattern, XOrOpPattern, BoolXOrOpPattern, // Comparison patterns BoolCmpIOpPattern, CmpFOpPattern, CmpFOpNanNonePattern, CmpIOpPattern, // Constant patterns ConstantCompositeOpPattern, ConstantScalarOpPattern, ReturnOpPattern, SelectOpPattern, SplatPattern, // Type cast patterns UIToFPI1Pattern, ZeroExtendI1Pattern, TruncI1Pattern, TypeCastingOpPattern, TypeCastingOpPattern, TypeCastingOpPattern, TypeCastingOpPattern, TypeCastingOpPattern, TypeCastingOpPattern, TypeCastingOpPattern, TypeCastingOpPattern, TypeCastingOpPattern>(typeConverter, context); // Give CmpFOpNanKernelPattern a higher benefit so it can prevail when Kernel // capability is available. patterns.add(typeConverter, context, /*benefit=*/2); } void populateTensorToSPIRVPatterns(SPIRVTypeConverter &typeConverter, int64_t byteCountThreshold, RewritePatternSet &patterns) { patterns.add(typeConverter, patterns.getContext(), byteCountThreshold); } } // namespace mlir