//===- Utils.cpp ---- Utilities for affine dialect transformation ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements miscellaneous transformation utilities for the Affine // dialect. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Affine/Utils.h" #include "mlir/Analysis/Utils.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Affine/IR/AffineValueMap.h" #include "mlir/IR/BlockAndValueMapping.h" #include "mlir/IR/IntegerSet.h" #include "mlir/Transforms/GreedyPatternRewriteDriver.h" #include "mlir/Transforms/LoopUtils.h" using namespace mlir; /// Promotes the `then` or the `else` block of `ifOp` (depending on whether /// `elseBlock` is false or true) into `ifOp`'s containing block, and discards /// the rest of the op. static void promoteIfBlock(AffineIfOp ifOp, bool elseBlock) { if (elseBlock) assert(ifOp.hasElse() && "else block expected"); Block *destBlock = ifOp->getBlock(); Block *srcBlock = elseBlock ? ifOp.getElseBlock() : ifOp.getThenBlock(); destBlock->getOperations().splice( Block::iterator(ifOp), srcBlock->getOperations(), srcBlock->begin(), std::prev(srcBlock->end())); ifOp.erase(); } /// Returns the outermost affine.for/parallel op that the `ifOp` is invariant /// on. The `ifOp` could be hoisted and placed right before such an operation. /// This method assumes that the ifOp has been canonicalized (to be correct and /// effective). static Operation *getOutermostInvariantForOp(AffineIfOp ifOp) { // Walk up the parents past all for op that this conditional is invariant on. auto ifOperands = ifOp.getOperands(); auto *res = ifOp.getOperation(); while (!isa(res->getParentOp())) { auto *parentOp = res->getParentOp(); if (auto forOp = dyn_cast(parentOp)) { if (llvm::is_contained(ifOperands, forOp.getInductionVar())) break; } else if (auto parallelOp = dyn_cast(parentOp)) { for (auto iv : parallelOp.getIVs()) if (llvm::is_contained(ifOperands, iv)) break; } else if (!isa(parentOp)) { // Won't walk up past anything other than affine.for/if ops. break; } // You can always hoist up past any affine.if ops. res = parentOp; } return res; } /// A helper for the mechanics of mlir::hoistAffineIfOp. Hoists `ifOp` just over /// `hoistOverOp`. Returns the new hoisted op if any hoisting happened, /// otherwise the same `ifOp`. static AffineIfOp hoistAffineIfOp(AffineIfOp ifOp, Operation *hoistOverOp) { // No hoisting to do. if (hoistOverOp == ifOp) return ifOp; // Create the hoisted 'if' first. Then, clone the op we are hoisting over for // the else block. Then drop the else block of the original 'if' in the 'then' // branch while promoting its then block, and analogously drop the 'then' // block of the original 'if' from the 'else' branch while promoting its else // block. BlockAndValueMapping operandMap; OpBuilder b(hoistOverOp); auto hoistedIfOp = b.create(ifOp.getLoc(), ifOp.getIntegerSet(), ifOp.getOperands(), /*elseBlock=*/true); // Create a clone of hoistOverOp to use for the else branch of the hoisted // conditional. The else block may get optimized away if empty. Operation *hoistOverOpClone = nullptr; // We use this unique name to identify/find `ifOp`'s clone in the else // version. Identifier idForIfOp = b.getIdentifier("__mlir_if_hoisting"); operandMap.clear(); b.setInsertionPointAfter(hoistOverOp); // We'll set an attribute to identify this op in a clone of this sub-tree. ifOp->setAttr(idForIfOp, b.getBoolAttr(true)); hoistOverOpClone = b.clone(*hoistOverOp, operandMap); // Promote the 'then' block of the original affine.if in the then version. promoteIfBlock(ifOp, /*elseBlock=*/false); // Move the then version to the hoisted if op's 'then' block. auto *thenBlock = hoistedIfOp.getThenBlock(); thenBlock->getOperations().splice(thenBlock->begin(), hoistOverOp->getBlock()->getOperations(), Block::iterator(hoistOverOp)); // Find the clone of the original affine.if op in the else version. AffineIfOp ifCloneInElse; hoistOverOpClone->walk([&](AffineIfOp ifClone) { if (!ifClone->getAttr(idForIfOp)) return WalkResult::advance(); ifCloneInElse = ifClone; return WalkResult::interrupt(); }); assert(ifCloneInElse && "if op clone should exist"); // For the else block, promote the else block of the original 'if' if it had // one; otherwise, the op itself is to be erased. if (!ifCloneInElse.hasElse()) ifCloneInElse.erase(); else promoteIfBlock(ifCloneInElse, /*elseBlock=*/true); // Move the else version into the else block of the hoisted if op. auto *elseBlock = hoistedIfOp.getElseBlock(); elseBlock->getOperations().splice( elseBlock->begin(), hoistOverOpClone->getBlock()->getOperations(), Block::iterator(hoistOverOpClone)); return hoistedIfOp; } LogicalResult mlir::affineParallelize(AffineForOp forOp, ArrayRef parallelReductions) { // Fail early if there are iter arguments that are not reductions. unsigned numReductions = parallelReductions.size(); if (numReductions != forOp.getNumIterOperands()) return failure(); Location loc = forOp.getLoc(); OpBuilder outsideBuilder(forOp); AffineMap lowerBoundMap = forOp.getLowerBoundMap(); ValueRange lowerBoundOperands = forOp.getLowerBoundOperands(); AffineMap upperBoundMap = forOp.getUpperBoundMap(); ValueRange upperBoundOperands = forOp.getUpperBoundOperands(); // Creating empty 1-D affine.parallel op. auto reducedValues = llvm::to_vector<4>(llvm::map_range( parallelReductions, [](const LoopReduction &red) { return red.value; })); auto reductionKinds = llvm::to_vector<4>(llvm::map_range( parallelReductions, [](const LoopReduction &red) { return red.kind; })); AffineParallelOp newPloop = outsideBuilder.create( loc, ValueRange(reducedValues).getTypes(), reductionKinds, llvm::makeArrayRef(lowerBoundMap), lowerBoundOperands, llvm::makeArrayRef(upperBoundMap), upperBoundOperands, llvm::makeArrayRef(forOp.getStep())); // Steal the body of the old affine for op. newPloop.region().takeBody(forOp.region()); Operation *yieldOp = &newPloop.getBody()->back(); // Handle the initial values of reductions because the parallel loop always // starts from the neutral value. SmallVector newResults; newResults.reserve(numReductions); for (unsigned i = 0; i < numReductions; ++i) { Value init = forOp.getIterOperands()[i]; // This works because we are only handling single-op reductions at the // moment. A switch on reduction kind or a mechanism to collect operations // participating in the reduction will be necessary for multi-op reductions. Operation *reductionOp = yieldOp->getOperand(i).getDefiningOp(); assert(reductionOp && "yielded value is expected to be produced by an op"); outsideBuilder.getInsertionBlock()->getOperations().splice( outsideBuilder.getInsertionPoint(), newPloop.getBody()->getOperations(), reductionOp); reductionOp->setOperands({init, newPloop->getResult(i)}); forOp->getResult(i).replaceAllUsesWith(reductionOp->getResult(0)); } // Update the loop terminator to yield reduced values bypassing the reduction // operation itself (now moved outside of the loop) and erase the block // arguments that correspond to reductions. Note that the loop always has one // "main" induction variable whenc coming from a non-parallel for. unsigned numIVs = 1; yieldOp->setOperands(reducedValues); newPloop.getBody()->eraseArguments( llvm::to_vector<4>(llvm::seq(numIVs, numReductions + numIVs))); forOp.erase(); return success(); } // Returns success if any hoisting happened. LogicalResult mlir::hoistAffineIfOp(AffineIfOp ifOp, bool *folded) { // Bail out early if the ifOp returns a result. TODO: Consider how to // properly support this case. if (ifOp.getNumResults() != 0) return failure(); // Apply canonicalization patterns and folding - this is necessary for the // hoisting check to be correct (operands should be composed), and to be more // effective (no unused operands). Since the pattern rewriter's folding is // entangled with application of patterns, we may fold/end up erasing the op, // in which case we return with `folded` being set. RewritePatternSet patterns(ifOp.getContext()); AffineIfOp::getCanonicalizationPatterns(patterns, ifOp.getContext()); bool erased; FrozenRewritePatternSet frozenPatterns(std::move(patterns)); (void)applyOpPatternsAndFold(ifOp, frozenPatterns, &erased); if (erased) { if (folded) *folded = true; return failure(); } if (folded) *folded = false; // The folding above should have ensured this, but the affine.if's // canonicalization is missing composition of affine.applys into it. assert(llvm::all_of(ifOp.getOperands(), [](Value v) { return isTopLevelValue(v) || isForInductionVar(v); }) && "operands not composed"); // We are going hoist as high as possible. // TODO: this could be customized in the future. auto *hoistOverOp = getOutermostInvariantForOp(ifOp); AffineIfOp hoistedIfOp = ::hoistAffineIfOp(ifOp, hoistOverOp); // Nothing to hoist over. if (hoistedIfOp == ifOp) return failure(); // Canonicalize to remove dead else blocks (happens whenever an 'if' moves up // a sequence of affine.fors that are all perfectly nested). (void)applyPatternsAndFoldGreedily( hoistedIfOp->getParentWithTrait(), frozenPatterns); return success(); } // Return the min expr after replacing the given dim. AffineExpr mlir::substWithMin(AffineExpr e, AffineExpr dim, AffineExpr min, AffineExpr max, bool positivePath) { if (e == dim) return positivePath ? min : max; if (auto bin = e.dyn_cast()) { AffineExpr lhs = bin.getLHS(); AffineExpr rhs = bin.getRHS(); if (bin.getKind() == mlir::AffineExprKind::Add) return substWithMin(lhs, dim, min, max, positivePath) + substWithMin(rhs, dim, min, max, positivePath); auto c1 = bin.getLHS().dyn_cast(); auto c2 = bin.getRHS().dyn_cast(); if (c1 && c1.getValue() < 0) return getAffineBinaryOpExpr( bin.getKind(), c1, substWithMin(rhs, dim, min, max, !positivePath)); if (c2 && c2.getValue() < 0) return getAffineBinaryOpExpr( bin.getKind(), substWithMin(lhs, dim, min, max, !positivePath), c2); return getAffineBinaryOpExpr( bin.getKind(), substWithMin(lhs, dim, min, max, positivePath), substWithMin(rhs, dim, min, max, positivePath)); } return e; } void mlir::normalizeAffineParallel(AffineParallelOp op) { // Loops with min/max in bounds are not normalized at the moment. if (op.hasMinMaxBounds()) return; AffineMap lbMap = op.lowerBoundsMap(); SmallVector steps = op.getSteps(); // No need to do any work if the parallel op is already normalized. bool isAlreadyNormalized = llvm::all_of(llvm::zip(steps, lbMap.getResults()), [](auto tuple) { int64_t step = std::get<0>(tuple); auto lbExpr = std::get<1>(tuple).template dyn_cast(); return lbExpr && lbExpr.getValue() == 0 && step == 1; }); if (isAlreadyNormalized) return; AffineValueMap ranges; AffineValueMap::difference(op.getUpperBoundsValueMap(), op.getLowerBoundsValueMap(), &ranges); auto builder = OpBuilder::atBlockBegin(op.getBody()); auto zeroExpr = builder.getAffineConstantExpr(0); SmallVector lbExprs; SmallVector ubExprs; for (unsigned i = 0, e = steps.size(); i < e; ++i) { int64_t step = steps[i]; // Adjust the lower bound to be 0. lbExprs.push_back(zeroExpr); // Adjust the upper bound expression: 'range / step'. AffineExpr ubExpr = ranges.getResult(i).ceilDiv(step); ubExprs.push_back(ubExpr); // Adjust the corresponding IV: 'lb + i * step'. BlockArgument iv = op.getBody()->getArgument(i); AffineExpr lbExpr = lbMap.getResult(i); unsigned nDims = lbMap.getNumDims(); auto expr = lbExpr + builder.getAffineDimExpr(nDims) * step; auto map = AffineMap::get(/*dimCount=*/nDims + 1, /*symbolCount=*/lbMap.getNumSymbols(), expr); // Use an 'affine.apply' op that will be simplified later in subsequent // canonicalizations. OperandRange lbOperands = op.getLowerBoundsOperands(); OperandRange dimOperands = lbOperands.take_front(nDims); OperandRange symbolOperands = lbOperands.drop_front(nDims); SmallVector applyOperands{dimOperands}; applyOperands.push_back(iv); applyOperands.append(symbolOperands.begin(), symbolOperands.end()); auto apply = builder.create(op.getLoc(), map, applyOperands); iv.replaceAllUsesExcept(apply, apply); } SmallVector newSteps(op.getNumDims(), 1); op.setSteps(newSteps); auto newLowerMap = AffineMap::get( /*dimCount=*/0, /*symbolCount=*/0, lbExprs, op.getContext()); op.setLowerBounds({}, newLowerMap); auto newUpperMap = AffineMap::get(ranges.getNumDims(), ranges.getNumSymbols(), ubExprs, op.getContext()); op.setUpperBounds(ranges.getOperands(), newUpperMap); } /// Normalizes affine.for ops. If the affine.for op has only a single iteration /// only then it is simply promoted, else it is normalized in the traditional /// way, by converting the lower bound to zero and loop step to one. The upper /// bound is set to the trip count of the loop. For now, original loops must /// have lower bound with a single result only. There is no such restriction on /// upper bounds. void mlir::normalizeAffineFor(AffineForOp op) { if (succeeded(promoteIfSingleIteration(op))) return; // Check if the forop is already normalized. if (op.hasConstantLowerBound() && (op.getConstantLowerBound() == 0) && (op.getStep() == 1)) return; // Check if the lower bound has a single result only. Loops with a max lower // bound can't be normalized without additional support like // affine.execute_region's. If the lower bound does not have a single result // then skip this op. if (op.getLowerBoundMap().getNumResults() != 1) return; Location loc = op.getLoc(); OpBuilder opBuilder(op); int64_t origLoopStep = op.getStep(); // Calculate upperBound for normalized loop. SmallVector ubOperands; AffineBound lb = op.getLowerBound(); AffineBound ub = op.getUpperBound(); ubOperands.reserve(ub.getNumOperands() + lb.getNumOperands()); AffineMap origLbMap = lb.getMap(); AffineMap origUbMap = ub.getMap(); // Add dimension operands from upper/lower bound. for (unsigned j = 0, e = origUbMap.getNumDims(); j < e; ++j) ubOperands.push_back(ub.getOperand(j)); for (unsigned j = 0, e = origLbMap.getNumDims(); j < e; ++j) ubOperands.push_back(lb.getOperand(j)); // Add symbol operands from upper/lower bound. for (unsigned j = 0, e = origUbMap.getNumSymbols(); j < e; ++j) ubOperands.push_back(ub.getOperand(origUbMap.getNumDims() + j)); for (unsigned j = 0, e = origLbMap.getNumSymbols(); j < e; ++j) ubOperands.push_back(lb.getOperand(origLbMap.getNumDims() + j)); // Add original result expressions from lower/upper bound map. SmallVector origLbExprs(origLbMap.getResults().begin(), origLbMap.getResults().end()); SmallVector origUbExprs(origUbMap.getResults().begin(), origUbMap.getResults().end()); SmallVector newUbExprs; // The original upperBound can have more than one result. For the new // upperBound of this loop, take difference of all possible combinations of // the ub results and lb result and ceildiv with the loop step. For e.g., // // affine.for %i1 = 0 to min affine_map<(d0)[] -> (d0 + 32, 1024)>(%i0) // will have an upperBound map as, // affine_map<(d0)[] -> (((d0 + 32) - 0) ceildiv 1, (1024 - 0) ceildiv // 1)>(%i0) // // Insert all combinations of upper/lower bound results. for (unsigned i = 0, e = origUbExprs.size(); i < e; ++i) { newUbExprs.push_back( (origUbExprs[i] - origLbExprs[0]).ceilDiv(origLoopStep)); } // Construct newUbMap. AffineMap newUbMap = AffineMap::get(origLbMap.getNumDims() + origUbMap.getNumDims(), origLbMap.getNumSymbols() + origUbMap.getNumSymbols(), newUbExprs, opBuilder.getContext()); // Normalize the loop. op.setUpperBound(ubOperands, newUbMap); op.setLowerBound({}, opBuilder.getConstantAffineMap(0)); op.setStep(1); // Calculate the Value of new loopIV. Create affine.apply for the value of // the loopIV in normalized loop. opBuilder.setInsertionPointToStart(op.getBody()); SmallVector lbOperands(lb.getOperands().begin(), lb.getOperands().begin() + lb.getMap().getNumDims()); // Add an extra dim operand for loopIV. lbOperands.push_back(op.getInductionVar()); // Add symbol operands from lower bound. for (unsigned j = 0, e = origLbMap.getNumSymbols(); j < e; ++j) lbOperands.push_back(lb.getOperand(origLbMap.getNumDims() + j)); AffineExpr origIVExpr = opBuilder.getAffineDimExpr(lb.getMap().getNumDims()); AffineExpr newIVExpr = origIVExpr * origLoopStep + origLbMap.getResult(0); AffineMap ivMap = AffineMap::get(origLbMap.getNumDims() + 1, origLbMap.getNumSymbols(), newIVExpr); Operation *newIV = opBuilder.create(loc, ivMap, lbOperands); op.getInductionVar().replaceAllUsesExcept(newIV->getResult(0), newIV); }