//===- Shape.cpp - MLIR Shape Operations ----------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Shape/IR/Shape.h" #include "mlir/Dialect/StandardOps/IR/Ops.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/Dialect/Traits.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/DialectImplementation.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/TypeUtilities.h" #include "mlir/Transforms/InliningUtils.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/TypeSwitch.h" #include "llvm/Support/raw_ostream.h" using namespace mlir; using namespace mlir::shape; #include "mlir/Dialect/Shape/IR/ShapeOpsDialect.cpp.inc" namespace { #include "ShapeCanonicalization.inc" } RankedTensorType shape::getExtentTensorType(MLIRContext *ctx, int64_t rank) { return RankedTensorType::get({rank}, IndexType::get(ctx)); } bool shape::isExtentTensorType(Type type) { auto ranked = type.dyn_cast(); return ranked && ranked.getRank() == 1 && ranked.getElementType().isIndex(); } LogicalResult shape::getShapeVec(Value input, SmallVectorImpl &shapeValues) { if (auto inputOp = input.getDefiningOp()) { auto type = inputOp.arg().getType().dyn_cast(); if (!type.hasRank()) return failure(); shapeValues = llvm::to_vector<6>(type.getShape()); return success(); } else if (auto inputOp = input.getDefiningOp()) { shapeValues = llvm::to_vector<6>(inputOp.shape().getValues()); return success(); } else if (auto inputOp = input.getDefiningOp()) { shapeValues = llvm::to_vector<6>( inputOp.value().cast().getValues()); return success(); } else { return failure(); } } static bool isErrorPropagationPossible(TypeRange operandTypes) { return llvm::any_of(operandTypes, [](Type ty) { return ty.isa(); }); } static LogicalResult verifySizeOrIndexOp(Operation *op) { assert(op != nullptr && op->getNumResults() == 1); Type resultTy = op->getResultTypes().front(); if (isErrorPropagationPossible(op->getOperandTypes())) { if (!resultTy.isa()) return op->emitOpError() << "if at least one of the operands can hold error values then " "the result must be of type `size` to propagate them"; } return success(); } static LogicalResult verifyShapeOrExtentTensorOp(Operation *op) { assert(op != nullptr && op->getNumResults() == 1); Type resultTy = op->getResultTypes().front(); if (isErrorPropagationPossible(op->getOperandTypes())) { if (!resultTy.isa()) return op->emitOpError() << "if at least one of the operands can hold error values then " "the result must be of type `shape` to propagate them"; } return success(); } template static bool eachHasOnlyOneOfTypes(TypeRange typeRange) { return typeRange.size() == 1 && typeRange.front().isa(); } template static bool eachHasOnlyOneOfTypes(TypeRange l, ranges... rs) { return eachHasOnlyOneOfTypes(l) && eachHasOnlyOneOfTypes(rs...); } //===----------------------------------------------------------------------===// // InlinerInterface //===----------------------------------------------------------------------===// namespace { /// This class defines the interface for inlining shape dialect ops. struct ShapeInlinerInterface : public DialectInlinerInterface { using DialectInlinerInterface::DialectInlinerInterface; // Returns true if the given region 'src' can be inlined into the region // 'dest' that is attached to an operation registered to the current dialect. bool isLegalToInline(Region *dest, Region *src, bool wouldBeCloned, BlockAndValueMapping &) const final { return true; } // Returns true if the given operation 'op', that is registered to this // dialect, can be inlined into the region 'dest' that is attached to an // operation registered to the current dialect. bool isLegalToInline(Operation *op, Region *dest, bool wouldBeCloned, BlockAndValueMapping &) const final { return true; } }; } // namespace void ShapeDialect::initialize() { addOperations< #define GET_OP_LIST #include "mlir/Dialect/Shape/IR/ShapeOps.cpp.inc" >(); addTypes(); addInterfaces(); // Allow unknown operations during prototyping and testing. As the dialect is // still evolving it makes it simple to start with an unregistered ops and // try different variants before actually defining the op. allowUnknownOperations(); } Operation *ShapeDialect::materializeConstant(OpBuilder &builder, Attribute value, Type type, Location loc) { if (type.isa() || isExtentTensorType(type)) return builder.create(loc, type, value.cast()); if (type.isa()) return builder.create(loc, type, value.cast()); if (type.isa()) return builder.create(loc, type, value.cast()); if (ConstantOp::isBuildableWith(value, type)) return builder.create(loc, type, value); return nullptr; } /// Parse a type registered to this dialect. Type ShapeDialect::parseType(DialectAsmParser &parser) const { StringRef keyword; if (parser.parseKeyword(&keyword)) return Type(); if (keyword == "shape") return ShapeType::get(getContext()); if (keyword == "size") return SizeType::get(getContext()); if (keyword == "value_shape") return ValueShapeType::get(getContext()); if (keyword == "witness") return WitnessType::get(getContext()); parser.emitError(parser.getNameLoc(), "unknown shape type: ") << keyword; return Type(); } /// Print a type registered to this dialect. void ShapeDialect::printType(Type type, DialectAsmPrinter &os) const { TypeSwitch(type) .Case([&](Type) { os << "shape"; }) .Case([&](Type) { os << "size"; }) .Case([&](Type) { os << "value_shape"; }) .Case([&](Type) { os << "witness"; }) .Default([](Type) { llvm_unreachable("unexpected 'shape' type kind"); }); } LogicalResult ShapeDialect::verifyOperationAttribute(Operation *op, NamedAttribute attribute) { // Verify shape.lib attribute. if (attribute.first == "shape.lib") { if (!op->hasTrait()) return op->emitError( "shape.lib attribute may only be on op implementing SymbolTable"); if (auto symbolRef = attribute.second.dyn_cast()) { auto *symbol = SymbolTable::lookupSymbolIn(op, symbolRef); if (!symbol) return op->emitError("shape function library ") << symbolRef << " not found"; return isa(symbol) ? success() : op->emitError() << symbolRef << " required to be shape function library"; } if (auto arr = attribute.second.dyn_cast()) { // Verify all entries are function libraries and mappings in libraries // refer to unique ops. DenseSet key; for (auto it : arr) { if (!it.isa()) return op->emitError( "only SymbolRefAttr allowed in shape.lib attribute array"); auto shapeFnLib = dyn_cast( SymbolTable::lookupSymbolIn(op, it.cast())); if (!shapeFnLib) return op->emitError() << it << " does not refer to FunctionLibraryOp"; for (auto mapping : shapeFnLib.mapping()) { if (!key.insert(mapping.first).second) { return op->emitError("only one op to shape mapping allowed, found " "multiple for `") << mapping.first << "`"; } } } return success(); } return op->emitError("only SymbolRefAttr or array of SymbolRefAttrs " "allowed as shape.lib attribute"); } return success(); } //===----------------------------------------------------------------------===// // AnyOp //===----------------------------------------------------------------------===// // TODO: Canonicalization should be implemented for shapes that can be // determined through mixtures of the known dimensions of the inputs. OpFoldResult AnyOp::fold(ArrayRef operands) { // Only the last operand is checked because AnyOp is commutative. if (operands.back()) return operands.back(); return nullptr; } //===----------------------------------------------------------------------===// // AssumingOp //===----------------------------------------------------------------------===// static ParseResult parseAssumingOp(OpAsmParser &parser, OperationState &result) { result.regions.reserve(1); Region *doRegion = result.addRegion(); auto &builder = parser.getBuilder(); OpAsmParser::OperandType cond; if (parser.parseOperand(cond) || parser.resolveOperand(cond, builder.getType(), result.operands)) return failure(); // Parse optional results type list. if (parser.parseOptionalArrowTypeList(result.types)) return failure(); // Parse the region and add a terminator if elided. if (parser.parseRegion(*doRegion, /*arguments=*/{}, /*argTypes=*/{})) return failure(); AssumingOp::ensureTerminator(*doRegion, parser.getBuilder(), result.location); // Parse the optional attribute list. if (parser.parseOptionalAttrDict(result.attributes)) return failure(); return success(); } static void print(OpAsmPrinter &p, AssumingOp op) { bool yieldsResults = !op.results().empty(); p << " " << op.witness(); if (yieldsResults) { p << " -> (" << op.getResultTypes() << ")"; } p.printRegion(op.doRegion(), /*printEntryBlockArgs=*/false, /*printBlockTerminators=*/yieldsResults); p.printOptionalAttrDict(op->getAttrs()); } namespace { // Removes AssumingOp with a passing witness and inlines the region. struct AssumingWithTrue : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AssumingOp op, PatternRewriter &rewriter) const override { auto witness = op.witness().getDefiningOp(); if (!witness || !witness.passingAttr()) return failure(); AssumingOp::inlineRegionIntoParent(op, rewriter); return success(); } }; struct AssumingOpRemoveUnusedResults : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AssumingOp op, PatternRewriter &rewriter) const override { Block *body = op.getBody(); auto yieldOp = llvm::cast(body->getTerminator()); // Find used values. SmallVector newYieldOperands; Value opResult, yieldOperand; for (auto it : llvm::zip(op.getResults(), yieldOp.operands())) { std::tie(opResult, yieldOperand) = it; if (!opResult.getUses().empty()) { newYieldOperands.push_back(yieldOperand); } } // Rewrite only if redundant results exist. if (newYieldOperands.size() == yieldOp->getNumOperands()) return failure(); // Replace yield op in the old assuming op's body and move the entire region // to the new assuming op. rewriter.setInsertionPointToEnd(body); auto newYieldOp = rewriter.replaceOpWithNewOp(yieldOp, newYieldOperands); rewriter.setInsertionPoint(op); auto newOp = rewriter.create( op.getLoc(), newYieldOp->getOperandTypes(), op.witness()); newOp.doRegion().takeBody(op.doRegion()); // Use the new results to replace the previously used ones. SmallVector replacementValues; auto src = newOp.getResults().begin(); for (auto it : op.getResults()) { if (it.getUses().empty()) replacementValues.push_back(nullptr); else replacementValues.push_back(*src++); } rewriter.replaceOp(op, replacementValues); return success(); } }; } // namespace void AssumingOp::getCanonicalizationPatterns(RewritePatternSet &patterns, MLIRContext *context) { patterns.add(context); } // See RegionBranchOpInterface in Interfaces/ControlFlowInterfaces.td void AssumingOp::getSuccessorRegions( Optional index, ArrayRef operands, SmallVectorImpl ®ions) { // AssumingOp has unconditional control flow into the region and back to the // parent, so return the correct RegionSuccessor purely based on the index // being None or 0. if (index.hasValue()) { regions.push_back(RegionSuccessor(getResults())); return; } regions.push_back(RegionSuccessor(&doRegion())); } void AssumingOp::inlineRegionIntoParent(AssumingOp &op, PatternRewriter &rewriter) { auto *blockBeforeAssuming = rewriter.getInsertionBlock(); auto *assumingBlock = op.getBody(); auto initPosition = rewriter.getInsertionPoint(); auto *blockAfterAssuming = rewriter.splitBlock(blockBeforeAssuming, initPosition); // Remove the AssumingOp and AssumingYieldOp. auto &yieldOp = assumingBlock->back(); rewriter.inlineRegionBefore(op.doRegion(), blockAfterAssuming); rewriter.replaceOp(op, yieldOp.getOperands()); rewriter.eraseOp(&yieldOp); // Merge blocks together as there was no branching behavior from the // AssumingOp. rewriter.mergeBlocks(assumingBlock, blockBeforeAssuming); rewriter.mergeBlocks(blockAfterAssuming, blockBeforeAssuming); } void AssumingOp::build( OpBuilder &builder, OperationState &result, Value witness, function_ref(OpBuilder &, Location)> bodyBuilder) { result.addOperands(witness); Region *bodyRegion = result.addRegion(); bodyRegion->push_back(new Block); Block &bodyBlock = bodyRegion->front(); // Build body. OpBuilder::InsertionGuard guard(builder); builder.setInsertionPointToStart(&bodyBlock); SmallVector yieldValues = bodyBuilder(builder, result.location); builder.create(result.location, yieldValues); SmallVector assumingTypes; for (Value v : yieldValues) assumingTypes.push_back(v.getType()); result.addTypes(assumingTypes); } //===----------------------------------------------------------------------===// // AddOp //===----------------------------------------------------------------------===// LogicalResult mlir::shape::AddOp::inferReturnTypes( MLIRContext *context, Optional location, ValueRange operands, DictionaryAttr attributes, RegionRange regions, SmallVectorImpl &inferredReturnTypes) { if (operands[0].getType().isa() || operands[1].getType().isa()) inferredReturnTypes.assign({SizeType::get(context)}); else inferredReturnTypes.assign({IndexType::get(context)}); return success(); } bool mlir::shape::AddOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { // SizeType is compatible with IndexType. return eachHasOnlyOneOfTypes(l, r); } //===----------------------------------------------------------------------===// // AssumingAllOp //===----------------------------------------------------------------------===// namespace { struct AssumingAllToCstrEqCanonicalization : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AssumingAllOp op, PatternRewriter &rewriter) const override { SmallVector shapes; for (Value w : op.inputs()) { auto cstrEqOp = w.getDefiningOp(); if (!cstrEqOp) return failure(); bool disjointShapes = llvm::none_of(cstrEqOp.shapes(), [&](Value s) { return llvm::is_contained(shapes, s); }); if (!shapes.empty() && !cstrEqOp.shapes().empty() && disjointShapes) return failure(); shapes.append(cstrEqOp.shapes().begin(), cstrEqOp.shapes().end()); } rewriter.replaceOpWithNewOp(op, shapes); return success(); } }; template struct RemoveDuplicateOperandsPattern : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(OpTy op, PatternRewriter &rewriter) const override { // Find unique operands. SmallVector unique; for (Value v : op.getOperands()) { if (!llvm::is_contained(unique, v)) unique.push_back(v); } // Reduce op to equivalent with unique operands. if (unique.size() < op.getNumOperands()) { rewriter.replaceOpWithNewOp(op, op->getResultTypes(), unique, op->getAttrs()); return success(); } return failure(); } }; } // namespace void AssumingAllOp::getCanonicalizationPatterns(RewritePatternSet &patterns, MLIRContext *context) { patterns.add>(context); } OpFoldResult AssumingAllOp::fold(ArrayRef operands) { // Iterate in reverse to first handle all constant operands. They are // guaranteed to be the tail of the inputs because this is commutative. for (int idx = operands.size() - 1; idx >= 0; idx--) { Attribute a = operands[idx]; // Cannot fold if any inputs are not constant; if (!a) return nullptr; // We do not need to keep statically known values after handling them in // this method. getOperation()->eraseOperand(idx); // Always false if any input is statically known false if (!a.cast().getValue()) return a; } // If this is reached, all inputs were statically known passing. return BoolAttr::get(getContext(), true); } static LogicalResult verify(AssumingAllOp op) { // Ensure that AssumingAllOp contains at least one operand if (op.getNumOperands() == 0) return op.emitOpError("no operands specified"); return success(); } void AssumingAllOp::build(OpBuilder &b, OperationState &state, ValueRange inputs) { build(b, state, b.getType(), inputs); } //===----------------------------------------------------------------------===// // BroadcastOp //===----------------------------------------------------------------------===// OpFoldResult BroadcastOp::fold(ArrayRef operands) { if (shapes().size() == 1) { // Otherwise, we need a cast which would be a canonicalization, not folding. if (shapes().front().getType() != getType()) return nullptr; return shapes().front(); } // TODO: Support folding with more than 2 input shapes if (shapes().size() > 2) return nullptr; if (!operands[0] || !operands[1]) return nullptr; auto lhsShape = llvm::to_vector<6>( operands[0].cast().getValues()); auto rhsShape = llvm::to_vector<6>( operands[1].cast().getValues()); SmallVector resultShape; // If the shapes are not compatible, we can't fold it. // TODO: Fold to an "error". if (!OpTrait::util::getBroadcastedShape(lhsShape, rhsShape, resultShape)) return nullptr; Builder builder(getContext()); return builder.getIndexTensorAttr(resultShape); } static LogicalResult verify(BroadcastOp op) { return verifyShapeOrExtentTensorOp(op); } namespace { template struct RemoveEmptyShapeOperandsPattern : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(OpTy op, PatternRewriter &rewriter) const override { auto isPotentiallyNonEmptyShape = [](Value shape) { if (auto extentTensorTy = shape.getType().dyn_cast()) { if (extentTensorTy.getDimSize(0) == 0) return false; } if (auto constShape = shape.getDefiningOp()) { if (constShape.shape().empty()) return false; } return true; }; auto newOperands = llvm::to_vector<8>( llvm::make_filter_range(op->getOperands(), isPotentiallyNonEmptyShape)); // Reduce op to equivalent without empty shape operands. if (newOperands.size() < op.getNumOperands()) { rewriter.replaceOpWithNewOp(op, op->getResultTypes(), newOperands, op->getAttrs()); return success(); } return failure(); } }; struct BroadcastForwardSingleOperandPattern : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(BroadcastOp op, PatternRewriter &rewriter) const override { if (op.getNumOperands() != 1) return failure(); Value replacement = op.shapes().front(); // Insert cast if needed. if (replacement.getType() != op.getType()) { auto loc = op.getLoc(); if (op.getType().isa()) { replacement = rewriter.create(loc, replacement); } else { assert(!op.getType().isa() && !replacement.getType().isa() && "expect extent tensor cast"); replacement = rewriter.create(loc, op.getType(), replacement); } } rewriter.replaceOp(op, replacement); return success(); } }; struct BroadcastFoldConstantOperandsPattern : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(BroadcastOp op, PatternRewriter &rewriter) const override { SmallVector foldedConstantShape; SmallVector newShapeOperands; for (Value shape : op.shapes()) { if (auto constShape = shape.getDefiningOp()) { SmallVector newFoldedConstantShape; if (OpTrait::util::getBroadcastedShape( foldedConstantShape, llvm::to_vector<8>(constShape.shape().getValues()), newFoldedConstantShape)) { foldedConstantShape = newFoldedConstantShape; continue; } } newShapeOperands.push_back(shape); } // Need at least two constant operands to fold anything. if (op.getNumOperands() - newShapeOperands.size() < 2) return failure(); auto foldedConstantOperandsTy = RankedTensorType::get( {static_cast(foldedConstantShape.size())}, rewriter.getIndexType()); newShapeOperands.push_back(rewriter.create( op.getLoc(), foldedConstantOperandsTy, rewriter.getIndexTensorAttr(foldedConstantShape))); rewriter.replaceOpWithNewOp(op, op.getType(), newShapeOperands); return success(); } }; template struct CanonicalizeCastExtentTensorOperandsPattern : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(OpTy op, PatternRewriter &rewriter) const override { // Canonicalize operands. bool anyChange = false; auto canonicalizeOperand = [&](Value operand) { if (auto castOp = operand.getDefiningOp()) { // Only eliminate the cast if it holds no shape information. bool isInformationLoosingCast = castOp.getType().cast().isDynamicDim(0); if (isInformationLoosingCast) { anyChange = true; return castOp.source(); } } return operand; }; auto newOperands = llvm::to_vector<8>( llvm::map_range(op.getOperands(), canonicalizeOperand)); // Rewrite op if any change required. if (!anyChange) return failure(); rewriter.replaceOpWithNewOp(op, op->getResultTypes(), newOperands); return success(); } }; struct BroadcastConcretizeResultTypePattern : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(BroadcastOp op, PatternRewriter &rewriter) const override { // Only concretize dynamic extent tensor result types. auto resultTy = op.getType().dyn_cast(); if (!resultTy || !resultTy.isDynamicDim(0)) return failure(); // Infer resulting shape rank if possible. int64_t maxRank = 0; for (Value shape : op.shapes()) { if (auto extentTensorTy = shape.getType().dyn_cast()) { // Cannot infer resulting shape rank if any operand is dynamically // ranked. if (extentTensorTy.isDynamicDim(0)) return failure(); maxRank = std::max(maxRank, extentTensorTy.getDimSize(0)); } } auto newOp = rewriter.create( op.getLoc(), getExtentTensorType(getContext(), maxRank), op.shapes()); rewriter.replaceOpWithNewOp(op, op.getType(), newOp); return success(); } }; } // namespace void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &patterns, MLIRContext *context) { patterns.add, RemoveDuplicateOperandsPattern, RemoveEmptyShapeOperandsPattern>(context); } //===----------------------------------------------------------------------===// // ConcatOp //===----------------------------------------------------------------------===// OpFoldResult ConcatOp::fold(ArrayRef operands) { if (!operands[0] || !operands[1]) return nullptr; auto lhsShape = llvm::to_vector<6>( operands[0].cast().getValues()); auto rhsShape = llvm::to_vector<6>( operands[1].cast().getValues()); SmallVector resultShape; resultShape.append(lhsShape.begin(), lhsShape.end()); resultShape.append(rhsShape.begin(), rhsShape.end()); Builder builder(getContext()); return builder.getIndexTensorAttr(resultShape); } //===----------------------------------------------------------------------===// // ConstShapeOp //===----------------------------------------------------------------------===// static void print(OpAsmPrinter &p, ConstShapeOp &op) { p << " "; p.printOptionalAttrDict(op->getAttrs(), /*elidedAttrs=*/{"shape"}); p << "["; interleaveComma(op.shape().getValues(), p, [&](int64_t i) { p << i; }); p << "] : "; p.printType(op.getType()); } static ParseResult parseConstShapeOp(OpAsmParser &parser, OperationState &result) { if (parser.parseOptionalAttrDict(result.attributes)) return failure(); // We piggy-back on ArrayAttr parsing, though we don't internally store the // shape as an ArrayAttr. // TODO: Implement custom parser and maybe make syntax a bit more concise. Attribute extentsRaw; NamedAttrList dummy; if (parser.parseAttribute(extentsRaw, "dummy", dummy)) return failure(); auto extentsArray = extentsRaw.dyn_cast(); if (!extentsArray) return failure(); SmallVector ints; for (Attribute extent : extentsArray) { IntegerAttr attr = extent.dyn_cast(); if (!attr) return failure(); ints.push_back(attr.getInt()); } Builder &builder = parser.getBuilder(); result.addAttribute("shape", builder.getIndexTensorAttr(ints)); Type resultTy; if (parser.parseColonType(resultTy)) return failure(); result.types.push_back(resultTy); return success(); } OpFoldResult ConstShapeOp::fold(ArrayRef) { return shapeAttr(); } void ConstShapeOp::getCanonicalizationPatterns(RewritePatternSet &patterns, MLIRContext *context) { patterns.add(context); } LogicalResult mlir::shape::ConstShapeOp::inferReturnTypes( MLIRContext *context, Optional location, ValueRange operands, DictionaryAttr attributes, RegionRange regions, SmallVectorImpl &inferredReturnTypes) { Builder b(context); auto shape = attributes.getAs("shape"); if (!shape) return emitOptionalError(location, "missing shape attribute"); inferredReturnTypes.assign({RankedTensorType::get( {static_cast(shape.size())}, b.getIndexType())}); return success(); } bool mlir::shape::ConstShapeOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { if (l.size() != 1 || r.size() != 1) return false; Type lhs = l.front(); Type rhs = r.front(); if (lhs == rhs) return true; if (lhs.isa() || rhs.isa()) // Shape type is compatible with all other valid return types. return true; return succeeded(verifyCompatibleShapes(lhs, rhs)); } //===----------------------------------------------------------------------===// // CstrBroadcastableOp //===----------------------------------------------------------------------===// void CstrBroadcastableOp::getCanonicalizationPatterns( RewritePatternSet &patterns, MLIRContext *context) { // Canonicalization patterns have overlap with the considerations during // folding in case additional shape information is inferred at some point that // does not result in folding. patterns.add, CstrBroadcastableEqOps, RemoveDuplicateOperandsPattern, RemoveEmptyShapeOperandsPattern>(context); } // Return true if there is exactly one attribute not representing a scalar // broadcast. static bool hasAtMostSingleNonScalar(ArrayRef attributes) { bool nonScalarSeen = false; for (Attribute a : attributes) { if (!a || a.cast().getNumElements() != 0) { if (nonScalarSeen) return false; nonScalarSeen = true; } } return true; } OpFoldResult CstrBroadcastableOp::fold(ArrayRef operands) { // No broadcasting is needed if all operands but one are scalar. if (hasAtMostSingleNonScalar(operands)) return BoolAttr::get(getContext(), true); if ([&] { SmallVector, 6> extents; for (const auto &operand : operands) { if (!operand) return false; extents.push_back(llvm::to_vector<6>( operand.cast().getValues())); } return OpTrait::util::staticallyKnownBroadcastable(extents); }()) return BoolAttr::get(getContext(), true); // Lastly, see if folding can be completed based on what constraints are known // on the input shapes. if ([&] { SmallVector, 6> extents; for (auto shapeValue : shapes()) { extents.emplace_back(); if (failed(getShapeVec(shapeValue, extents.back()))) return false; } return OpTrait::util::staticallyKnownBroadcastable(extents); }()) return BoolAttr::get(getContext(), true); // Because a failing witness result here represents an eventual assertion // failure, we do not replace it with a constant witness. return nullptr; } static LogicalResult verify(CstrBroadcastableOp op) { // Ensure that AssumingAllOp contains at least one operand if (op.getNumOperands() < 2) return op.emitOpError("required at least 2 input shapes"); return success(); } //===----------------------------------------------------------------------===// // CstrEqOp //===----------------------------------------------------------------------===// void CstrEqOp::getCanonicalizationPatterns(RewritePatternSet &patterns, MLIRContext *context) { // If inputs are equal, return passing witness patterns.add(context); } OpFoldResult CstrEqOp::fold(ArrayRef operands) { if (llvm::all_of(operands, [&](Attribute a) { return a && a == operands[0]; })) return BoolAttr::get(getContext(), true); // Because a failing witness result here represents an eventual assertion // failure, we do not try to replace it with a constant witness. Similarly, we // cannot if there are any non-const inputs. return nullptr; } //===----------------------------------------------------------------------===// // ConstSizeOp //===----------------------------------------------------------------------===// void ConstSizeOp::build(OpBuilder &builder, OperationState &result, int64_t value) { build(builder, result, builder.getIndexAttr(value)); } OpFoldResult ConstSizeOp::fold(ArrayRef) { return valueAttr(); } void ConstSizeOp::getAsmResultNames( llvm::function_ref setNameFn) { SmallString<4> buffer; llvm::raw_svector_ostream os(buffer); os << "c" << value(); setNameFn(getResult(), os.str()); } //===----------------------------------------------------------------------===// // ConstWitnessOp //===----------------------------------------------------------------------===// OpFoldResult ConstWitnessOp::fold(ArrayRef) { return passingAttr(); } //===----------------------------------------------------------------------===// // CstrRequireOp //===----------------------------------------------------------------------===// OpFoldResult CstrRequireOp::fold(ArrayRef operands) { return operands[0]; } //===----------------------------------------------------------------------===// // DivOp //===----------------------------------------------------------------------===// OpFoldResult DivOp::fold(ArrayRef operands) { auto lhs = operands[0].dyn_cast_or_null(); if (!lhs) return nullptr; auto rhs = operands[1].dyn_cast_or_null(); if (!rhs) return nullptr; // Division in APInt does not follow floor(lhs, rhs) when the result is // negative. Rather, APInt rounds toward zero. APInt quotient, remainder; APInt::sdivrem(lhs.getValue(), rhs.getValue(), quotient, remainder); if (quotient.isNegative() && !remainder.isNullValue()) { quotient -= 1; } Type indexTy = IndexType::get(getContext()); return IntegerAttr::get(indexTy, quotient); } LogicalResult mlir::shape::DivOp::inferReturnTypes( MLIRContext *context, Optional location, ValueRange operands, DictionaryAttr attributes, RegionRange regions, SmallVectorImpl &inferredReturnTypes) { if (operands[0].getType().isa() || operands[1].getType().isa()) inferredReturnTypes.assign({SizeType::get(context)}); else inferredReturnTypes.assign({IndexType::get(context)}); return success(); } bool mlir::shape::DivOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { // SizeType is compatible with IndexType. return eachHasOnlyOneOfTypes(l, r); } //===----------------------------------------------------------------------===// // ShapeEqOp //===----------------------------------------------------------------------===// OpFoldResult ShapeEqOp::fold(ArrayRef operands) { bool allSame = true; if (!operands.empty() && !operands[0]) return {}; for (Attribute operand : operands.drop_front(1)) { if (!operand) return {}; allSame = allSame && operand == operands[0]; } return BoolAttr::get(getContext(), allSame); } //===----------------------------------------------------------------------===// // IndexToSizeOp //===----------------------------------------------------------------------===// OpFoldResult IndexToSizeOp::fold(ArrayRef operands) { // Constant values of both types, `shape.size` and `index`, are represented as // `IntegerAttr`s which makes constant folding simple. if (Attribute arg = operands[0]) return arg; return {}; } void IndexToSizeOp::getCanonicalizationPatterns(RewritePatternSet &patterns, MLIRContext *context) { patterns.add(context); } //===----------------------------------------------------------------------===// // FromExtentsOp //===----------------------------------------------------------------------===// OpFoldResult FromExtentsOp::fold(ArrayRef operands) { if (llvm::any_of(operands, [](Attribute a) { return !a; })) return nullptr; SmallVector extents; for (auto attr : operands) extents.push_back(attr.cast().getInt()); Builder builder(getContext()); return builder.getIndexTensorAttr(extents); } //===----------------------------------------------------------------------===// // FunctionLibraryOp //===----------------------------------------------------------------------===// void FunctionLibraryOp::build(OpBuilder &builder, OperationState &result, StringRef name) { result.attributes.push_back(builder.getNamedAttr( ::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name))); } FuncOp FunctionLibraryOp::getShapeFunction(Operation *op) { auto attr = mapping() .get(op->getName().getIdentifier()) .dyn_cast_or_null(); if (!attr) return nullptr; return lookupSymbol(attr); } ParseResult parseFunctionLibraryOp(OpAsmParser &parser, OperationState &result) { // Parse the op name. StringAttr nameAttr; if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(), result.attributes)) return failure(); if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) return failure(); auto *bodyRegion = result.addRegion(); if (parser.parseRegion(*bodyRegion)) return failure(); if (parser.parseKeyword("mapping")) return failure(); DictionaryAttr mappingAttr; if (parser.parseAttribute(mappingAttr, parser.getBuilder().getType(), "mapping", result.attributes)) return failure(); return success(); } void print(OpAsmPrinter &p, FunctionLibraryOp op) { p << ' '; p.printSymbolName(op.getName()); p.printOptionalAttrDictWithKeyword( op->getAttrs(), {SymbolTable::getSymbolAttrName(), "mapping"}); p.printRegion(op.getOperation()->getRegion(0), /*printEntryBlockArgs=*/false, /*printBlockTerminators=*/false); p << " mapping "; p.printAttributeWithoutType(op.mappingAttr()); } //===----------------------------------------------------------------------===// // GetExtentOp //===----------------------------------------------------------------------===// Optional GetExtentOp::getConstantDim() { if (auto constSizeOp = dim().getDefiningOp()) return constSizeOp.value().getLimitedValue(); if (auto constantOp = dim().getDefiningOp()) return constantOp.value().cast().getInt(); return llvm::None; } OpFoldResult GetExtentOp::fold(ArrayRef operands) { auto elements = operands[0].dyn_cast_or_null(); if (!elements) return nullptr; Optional dim = getConstantDim(); if (!dim.hasValue()) return nullptr; if (dim.getValue() >= elements.getNumElements()) return nullptr; return elements.getValue({(uint64_t)dim.getValue()}); } void GetExtentOp::build(OpBuilder &builder, OperationState &result, Value shape, int64_t dim) { auto loc = result.location; auto dimAttr = builder.getIndexAttr(dim); if (shape.getType().isa()) { Value dim = builder.create(loc, dimAttr); build(builder, result, builder.getType(), shape, dim); } else { Value dim = builder.create(loc, builder.getIndexType(), dimAttr); build(builder, result, builder.getIndexType(), shape, dim); } } LogicalResult mlir::shape::GetExtentOp::inferReturnTypes( MLIRContext *context, Optional location, ValueRange operands, DictionaryAttr attributes, RegionRange regions, SmallVectorImpl &inferredReturnTypes) { inferredReturnTypes.assign({IndexType::get(context)}); return success(); } bool mlir::shape::GetExtentOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { // SizeType is compatible with IndexType. return eachHasOnlyOneOfTypes(l, r); } //===----------------------------------------------------------------------===// // IsBroadcastableOp //===----------------------------------------------------------------------===// void IsBroadcastableOp::getCanonicalizationPatterns(RewritePatternSet &patterns, MLIRContext *context) { patterns.add>(context); } OpFoldResult IsBroadcastableOp::fold(ArrayRef operands) { // Can always broadcast fewer than two shapes. if (operands.size() < 2) { return BoolAttr::get(getContext(), true); } return nullptr; } //===----------------------------------------------------------------------===// // JoinOp //===----------------------------------------------------------------------===// LogicalResult mlir::shape::JoinOp::inferReturnTypes( MLIRContext *context, Optional location, ValueRange operands, DictionaryAttr attributes, RegionRange regions, SmallVectorImpl &inferredReturnTypes) { inferredReturnTypes.assign({operands[0].getType()}); return success(); } bool mlir::shape::JoinOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { if (l.size() != 1 || r.size() != 1) return false; if (l == r) return true; Type lhs = l.front(); Type rhs = r.front(); if (lhs != rhs) return false; if (lhs.isa() || lhs.isa()) return true; if (succeeded(verifyCompatibleShapes({lhs, rhs}))) return true; return false; } //===----------------------------------------------------------------------===// // RankOp //===----------------------------------------------------------------------===// OpFoldResult shape::RankOp::fold(ArrayRef operands) { auto shape = operands[0].dyn_cast_or_null(); if (!shape) return {}; int64_t rank = shape.getNumElements(); Builder builder(getContext()); return builder.getIndexAttr(rank); } /// Evaluate the `rank` operation for shapes of ranked tensors at compile time. /// Constant folding fails in cases where only the rank is constant, not the /// shape itself. /// This canonicalization matches `shape.rank(shape.shape_of(%ranked_tensor))`. /// /// Example: /// /// %shape = shape.shape_of %ranked_tensor : tensor<1x2x?xf32> /// %rank = shape.rank %shape /// /// becomes /// /// %rank = shape.const_size 3 namespace { struct RankShapeOfCanonicalizationPattern : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(shape::RankOp op, PatternRewriter &rewriter) const override { auto shapeOfOp = op.shape().getDefiningOp(); if (!shapeOfOp) return failure(); auto rankedTensorType = shapeOfOp.arg().getType().dyn_cast(); if (!rankedTensorType) return failure(); int64_t rank = rankedTensorType.getRank(); if (op.getType().isa()) { rewriter.replaceOpWithNewOp(op.getOperation(), rank); } else if (op.getType().isa()) { rewriter.replaceOpWithNewOp(op.getOperation(), rank); } else { return failure(); } return success(); } }; } // namespace void shape::RankOp::getCanonicalizationPatterns(RewritePatternSet &patterns, MLIRContext *context) { patterns.add(context); } LogicalResult mlir::shape::RankOp::inferReturnTypes( MLIRContext *context, Optional location, ValueRange operands, DictionaryAttr attributes, RegionRange regions, SmallVectorImpl &inferredReturnTypes) { if (operands[0].getType().isa()) inferredReturnTypes.assign({SizeType::get(context)}); else inferredReturnTypes.assign({IndexType::get(context)}); return success(); } bool mlir::shape::RankOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { // SizeType is compatible with IndexType. return eachHasOnlyOneOfTypes(l, r); } //===----------------------------------------------------------------------===// // NumElementsOp //===----------------------------------------------------------------------===// OpFoldResult NumElementsOp::fold(ArrayRef operands) { // Fold only when argument constant. Attribute shape = operands[0]; if (!shape) return {}; APInt product(64, 1); for (auto value : shape.cast()) product *= value; Builder builder(getContext()); return builder.getIndexAttr(product.getLimitedValue()); } LogicalResult mlir::shape::NumElementsOp::inferReturnTypes( MLIRContext *context, Optional location, ValueRange operands, DictionaryAttr attributes, RegionRange regions, SmallVectorImpl &inferredReturnTypes) { if (operands[0].getType().isa()) inferredReturnTypes.assign({SizeType::get(context)}); else inferredReturnTypes.assign({IndexType::get(context)}); return success(); } bool mlir::shape::NumElementsOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { // SizeType is compatible with IndexType. return eachHasOnlyOneOfTypes(l, r); } //===----------------------------------------------------------------------===// // MaxOp //===----------------------------------------------------------------------===// OpFoldResult MaxOp::fold(llvm::ArrayRef operands) { // If operands are equal, just propagate one. if (lhs() == rhs()) return lhs(); return nullptr; } LogicalResult mlir::shape::MaxOp::inferReturnTypes( MLIRContext *context, Optional location, ValueRange operands, DictionaryAttr attributes, RegionRange regions, SmallVectorImpl &inferredReturnTypes) { if (operands[0].getType() == operands[1].getType()) inferredReturnTypes.assign({operands[0].getType()}); else inferredReturnTypes.assign({SizeType::get(context)}); return success(); } bool mlir::shape::MaxOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { if (l.size() != 1 || r.size() != 1) return false; if (l.front().isa() && r.front().isa()) return true; if (l.front().isa() && r.front().isa()) return true; return false; } //===----------------------------------------------------------------------===// // MinOp //===----------------------------------------------------------------------===// OpFoldResult MinOp::fold(llvm::ArrayRef operands) { // If operands are equal, just propagate one. if (lhs() == rhs()) return lhs(); return nullptr; } LogicalResult mlir::shape::MinOp::inferReturnTypes( MLIRContext *context, Optional location, ValueRange operands, DictionaryAttr attributes, RegionRange regions, SmallVectorImpl &inferredReturnTypes) { if (operands[0].getType() == operands[1].getType()) inferredReturnTypes.assign({operands[0].getType()}); else inferredReturnTypes.assign({SizeType::get(context)}); return success(); } bool mlir::shape::MinOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { if (l.size() != 1 || r.size() != 1) return false; if (l.front().isa() && r.front().isa()) return true; if (l.front().isa() && r.front().isa()) return true; return false; } //===----------------------------------------------------------------------===// // MulOp //===----------------------------------------------------------------------===// OpFoldResult MulOp::fold(ArrayRef operands) { auto lhs = operands[0].dyn_cast_or_null(); if (!lhs) return nullptr; auto rhs = operands[1].dyn_cast_or_null(); if (!rhs) return nullptr; APInt folded = lhs.getValue() * rhs.getValue(); Type indexTy = IndexType::get(getContext()); return IntegerAttr::get(indexTy, folded); } LogicalResult mlir::shape::MulOp::inferReturnTypes( MLIRContext *context, Optional location, ValueRange operands, DictionaryAttr attributes, RegionRange regions, SmallVectorImpl &inferredReturnTypes) { if (operands[0].getType().isa() || operands[1].getType().isa()) inferredReturnTypes.assign({SizeType::get(context)}); else inferredReturnTypes.assign({IndexType::get(context)}); return success(); } bool mlir::shape::MulOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { // SizeType is compatible with IndexType. return eachHasOnlyOneOfTypes(l, r); } //===----------------------------------------------------------------------===// // ShapeOfOp //===----------------------------------------------------------------------===// OpFoldResult ShapeOfOp::fold(ArrayRef) { auto type = getOperand().getType().dyn_cast(); if (!type || !type.hasStaticShape()) return nullptr; Builder builder(getContext()); return builder.getIndexTensorAttr(type.getShape()); } namespace { struct ShapeOfWithTensor : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(shape::ShapeOfOp op, PatternRewriter &rewriter) const override { if (!op.arg().getType().isa()) return failure(); if (op.getType().isa()) return failure(); rewriter.replaceOpWithNewOp(op.getOperation(), op.arg()); return success(); } }; // Canonicalize // ``` // %0 = shape.shape_of %arg : tensor -> tensor<3xindex> // %1 = tensor.cast %0 : tensor<3xindex> to tensor // ``` // to // ``` // %1 = shape.shape_of %arg : tensor -> tensor // ``` struct ShapeOfCastExtentTensor : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(tensor::CastOp op, PatternRewriter &rewriter) const override { auto ty = op.getType().dyn_cast(); if (!ty || ty.getRank() != 1) return failure(); auto shapeOfOp = op.source().getDefiningOp(); if (!shapeOfOp) return failure(); // Argument type must be ranked and must not conflict. auto argTy = shapeOfOp.arg().getType().dyn_cast(); if (!argTy || (!ty.isDynamicDim(0) && ty.getDimSize(0) != argTy.getRank())) return failure(); rewriter.replaceOpWithNewOp(op, ty, shapeOfOp.arg()); return success(); } }; } // namespace void ShapeOfOp::getCanonicalizationPatterns(RewritePatternSet &patterns, MLIRContext *context) { patterns.add(context); } LogicalResult mlir::shape::ShapeOfOp::inferReturnTypes( MLIRContext *context, Optional location, ValueRange operands, DictionaryAttr attributes, RegionRange regions, SmallVectorImpl &inferredReturnTypes) { if (operands[0].getType().isa()) inferredReturnTypes.assign({ShapeType::get(context)}); else { auto shapedTy = operands[0].getType().cast(); int64_t rank = shapedTy.hasRank() ? shapedTy.getRank() : ShapedType::kDynamicSize; Type indexTy = IndexType::get(context); Type extentTensorTy = RankedTensorType::get({rank}, indexTy); inferredReturnTypes.assign({extentTensorTy}); } return success(); } bool mlir::shape::ShapeOfOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { if (l.size() != 1 || r.size() != 1) return false; if (l == r) return true; Type lhs = l.front(); Type rhs = r.front(); if (!lhs.isa() || !rhs.isa()) return false; if (lhs.isa() || rhs.isa()) // Shape type is compatible with all other valid return types. return true; if (succeeded(verifyCompatibleShapes({lhs, rhs}))) return true; return false; } //===----------------------------------------------------------------------===// // SizeToIndexOp //===----------------------------------------------------------------------===// OpFoldResult SizeToIndexOp::fold(ArrayRef operands) { // Constant values of both types, `shape.size` and `index`, are represented as // `IntegerAttr`s which makes constant folding simple. if (Attribute arg = operands[0]) return arg; return impl::foldCastOp(*this); } void SizeToIndexOp::getCanonicalizationPatterns(RewritePatternSet &patterns, MLIRContext *context) { patterns.add(context); } //===----------------------------------------------------------------------===// // YieldOp //===----------------------------------------------------------------------===// static LogicalResult verify(shape::YieldOp op) { auto *parentOp = op->getParentOp(); auto results = parentOp->getResults(); auto operands = op.getOperands(); if (parentOp->getNumResults() != op.getNumOperands()) return op.emitOpError() << "number of operands does not match number of " "results of its parent"; for (auto e : llvm::zip(results, operands)) if (std::get<0>(e).getType() != std::get<1>(e).getType()) return op.emitOpError() << "types mismatch between yield op and its parent"; return success(); } //===----------------------------------------------------------------------===// // SplitAtOp //===----------------------------------------------------------------------===// LogicalResult SplitAtOp::fold(ArrayRef operands, SmallVectorImpl &results) { if (!operands[0] || !operands[1]) return failure(); auto shapeVec = llvm::to_vector<6>( operands[0].cast().getValues()); auto shape = llvm::makeArrayRef(shapeVec); auto splitPoint = operands[1].cast().getInt(); // Verify that the split point is in the correct range. // TODO: Constant fold to an "error". int64_t rank = shape.size(); if (!(-rank <= splitPoint && splitPoint <= rank)) return failure(); if (splitPoint < 0) splitPoint += shape.size(); Builder builder(operands[0].getContext()); results.push_back(builder.getIndexTensorAttr(shape.take_front(splitPoint))); results.push_back(builder.getIndexTensorAttr(shape.drop_front(splitPoint))); return success(); } //===----------------------------------------------------------------------===// // ToExtentTensorOp //===----------------------------------------------------------------------===// OpFoldResult ToExtentTensorOp::fold(ArrayRef operands) { if (!operands[0]) return impl::foldCastOp(*this); Builder builder(getContext()); auto shape = llvm::to_vector<6>( operands[0].cast().getValues()); auto type = RankedTensorType::get({static_cast(shape.size())}, builder.getIndexType()); return DenseIntElementsAttr::get(type, shape); } //===----------------------------------------------------------------------===// // ReduceOp //===----------------------------------------------------------------------===// void ReduceOp::build(OpBuilder &builder, OperationState &result, Value shape, ValueRange initVals) { result.addOperands(shape); result.addOperands(initVals); Region *bodyRegion = result.addRegion(); bodyRegion->push_back(new Block); Block &bodyBlock = bodyRegion->front(); bodyBlock.addArgument(builder.getIndexType()); Type elementType; if (auto tensorType = shape.getType().dyn_cast()) elementType = tensorType.getElementType(); else elementType = SizeType::get(builder.getContext()); bodyBlock.addArgument(elementType); for (Type initValType : initVals.getTypes()) { bodyBlock.addArgument(initValType); result.addTypes(initValType); } } static LogicalResult verify(ReduceOp op) { // Verify block arg types. Block &block = op.region().front(); // The block takes index, extent, and aggregated values as arguments. auto blockArgsCount = op.initVals().size() + 2; if (block.getNumArguments() != blockArgsCount) return op.emitOpError() << "ReduceOp body is expected to have " << blockArgsCount << " arguments"; // The first block argument is the index and must always be of type `index`. if (!block.getArgument(0).getType().isa()) return op.emitOpError( "argument 0 of ReduceOp body is expected to be of IndexType"); // The second block argument is the extent and must be of type `size` or // `index`, depending on whether the reduce operation is applied to a shape or // to an extent tensor. Type extentTy = block.getArgument(1).getType(); if (op.shape().getType().isa()) { if (!extentTy.isa()) return op.emitOpError("argument 1 of ReduceOp body is expected to be of " "SizeType if the ReduceOp operates on a ShapeType"); } else { if (!extentTy.isa()) return op.emitOpError( "argument 1 of ReduceOp body is expected to be of IndexType if the " "ReduceOp operates on an extent tensor"); } for (auto type : llvm::enumerate(op.initVals())) if (block.getArgument(type.index() + 2).getType() != type.value().getType()) return op.emitOpError() << "type mismatch between argument " << type.index() + 2 << " of ReduceOp body and initial value " << type.index(); return success(); } static ParseResult parseReduceOp(OpAsmParser &parser, OperationState &result) { // Parse operands. SmallVector operands; Type shapeOrExtentTensorType; if (parser.parseOperandList(operands, /*requiredOperandCount=*/-1, OpAsmParser::Delimiter::Paren) || parser.parseColonType(shapeOrExtentTensorType) || parser.parseOptionalArrowTypeList(result.types)) return failure(); // Resolve operands. auto initVals = llvm::makeArrayRef(operands).drop_front(); if (parser.resolveOperand(operands.front(), shapeOrExtentTensorType, result.operands) || parser.resolveOperands(initVals, result.types, parser.getNameLoc(), result.operands)) return failure(); // Parse the body. Region *body = result.addRegion(); if (parser.parseRegion(*body, /*args=*/{}, /*argTypes=*/{})) return failure(); // Parse attributes. if (parser.parseOptionalAttrDict(result.attributes)) return failure(); return success(); } static void print(OpAsmPrinter &p, ReduceOp op) { p << '(' << op.shape() << ", " << op.initVals() << ") : " << op.shape().getType(); p.printOptionalArrowTypeList(op.getResultTypes()); p.printRegion(op.region()); p.printOptionalAttrDict(op->getAttrs()); } #define GET_OP_CLASSES #include "mlir/Dialect/Shape/IR/ShapeOps.cpp.inc"