// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py // RUN: mlir-opt %s -sparsification | FileCheck %s #X = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "dense" ], dimOrdering = affine_map<(i,j,k) -> (k,i,j)> }> #trait = { indexing_maps = [ affine_map<(i,j,k) -> (k,i,j)>, // A (in) affine_map<(i,j,k) -> (i,j,k)> // X (out) ], iterator_types = ["parallel", "parallel", "parallel"] } // CHECK-LABEL: func @sparse_static_dims( // CHECK-SAME: %[[VAL_0:.*]]: tensor<10x20x30xf32, #sparse_tensor.encoding<{{{.*}}}>>, // CHECK-SAME: %[[VAL_1:.*]]: tensor<20x30x10xf32>) -> tensor<20x30x10xf32> { // CHECK: %[[VAL_2:.*]] = constant 20 : index // CHECK: %[[VAL_3:.*]] = constant 30 : index // CHECK: %[[VAL_4:.*]] = constant 10 : index // CHECK: %[[VAL_5:.*]] = constant 0 : index // CHECK: %[[VAL_6:.*]] = constant 1 : index // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<10x20x30xf32, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_8:.*]] = memref.buffer_cast %[[VAL_1]] : memref<20x30x10xf32> // CHECK: %[[VAL_9:.*]] = memref.alloc() : memref<20x30x10xf32> // CHECK: memref.copy %[[VAL_8]], %[[VAL_9]] : memref<20x30x10xf32> to memref<20x30x10xf32> // CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] { // CHECK: scf.for %[[VAL_11:.*]] = %[[VAL_5]] to %[[VAL_4]] step %[[VAL_6]] { // CHECK: %[[VAL_12:.*]] = muli %[[VAL_10]], %[[VAL_4]] : index // CHECK: %[[VAL_13:.*]] = addi %[[VAL_12]], %[[VAL_11]] : index // CHECK: scf.for %[[VAL_14:.*]] = %[[VAL_5]] to %[[VAL_2]] step %[[VAL_6]] { // CHECK: %[[VAL_15:.*]] = muli %[[VAL_13]], %[[VAL_2]] : index // CHECK: %[[VAL_16:.*]] = addi %[[VAL_15]], %[[VAL_14]] : index // CHECK: %[[VAL_17:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_16]]] : memref // CHECK: memref.store %[[VAL_17]], %[[VAL_9]]{{\[}}%[[VAL_14]], %[[VAL_10]], %[[VAL_11]]] : memref<20x30x10xf32> // CHECK: } // CHECK: } // CHECK: } // CHECK: %[[VAL_18:.*]] = memref.tensor_load %[[VAL_9]] : memref<20x30x10xf32> // CHECK: return %[[VAL_18]] : tensor<20x30x10xf32> // CHECK: } func @sparse_static_dims(%arga: tensor<10x20x30xf32, #X>, %argx: tensor<20x30x10xf32>) -> tensor<20x30x10xf32> { %0 = linalg.generic #trait ins(%arga: tensor<10x20x30xf32, #X>) outs(%argx: tensor<20x30x10xf32>) { ^bb(%a : f32, %x: f32): linalg.yield %a : f32 } -> tensor<20x30x10xf32> return %0 : tensor<20x30x10xf32> } // CHECK-LABEL: func @sparse_dynamic_dims( // CHECK-SAME: %[[VAL_0:.*]]: tensor>, // CHECK-SAME: %[[VAL_1:.*]]: tensor) -> tensor { // CHECK: %[[VAL_2:.*]] = constant 2 : index // CHECK: %[[VAL_3:.*]] = constant 0 : index // CHECK: %[[VAL_4:.*]] = constant 1 : index // CHECK: %[[VAL_5:.*]] = sparse_tensor.values %[[VAL_0]] : tensor> // CHECK: %[[VAL_6:.*]] = tensor.dim %[[VAL_1]], %[[VAL_3]] : tensor // CHECK: %[[VAL_7:.*]] = tensor.dim %[[VAL_1]], %[[VAL_4]] : tensor // CHECK: %[[VAL_8:.*]] = tensor.dim %[[VAL_1]], %[[VAL_2]] : tensor // CHECK: %[[VAL_9:.*]] = memref.buffer_cast %[[VAL_1]] : memref // CHECK: %[[VAL_10:.*]] = memref.alloc(%[[VAL_6]], %[[VAL_7]], %[[VAL_8]]) : memref // CHECK: memref.copy %[[VAL_9]], %[[VAL_10]] : memref to memref // CHECK: scf.for %[[VAL_11:.*]] = %[[VAL_3]] to %[[VAL_7]] step %[[VAL_4]] { // CHECK: scf.for %[[VAL_12:.*]] = %[[VAL_3]] to %[[VAL_8]] step %[[VAL_4]] { // CHECK: %[[VAL_13:.*]] = muli %[[VAL_8]], %[[VAL_11]] : index // CHECK: %[[VAL_14:.*]] = addi %[[VAL_13]], %[[VAL_12]] : index // CHECK: scf.for %[[VAL_15:.*]] = %[[VAL_3]] to %[[VAL_6]] step %[[VAL_4]] { // CHECK: %[[VAL_16:.*]] = muli %[[VAL_6]], %[[VAL_14]] : index // CHECK: %[[VAL_17:.*]] = addi %[[VAL_16]], %[[VAL_15]] : index // CHECK: %[[VAL_18:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_17]]] : memref // CHECK: memref.store %[[VAL_18]], %[[VAL_10]]{{\[}}%[[VAL_15]], %[[VAL_11]], %[[VAL_12]]] : memref // CHECK: } // CHECK: } // CHECK: } // CHECK: %[[VAL_19:.*]] = memref.tensor_load %[[VAL_10]] : memref // CHECK: return %[[VAL_19]] : tensor // CHECK: } func @sparse_dynamic_dims(%arga: tensor, %argx: tensor) -> tensor { %0 = linalg.generic #trait ins(%arga: tensor) outs(%argx: tensor) { ^bb(%a : f32, %x: f32): linalg.yield %a : f32 } -> tensor return %0 : tensor }