// RUN: mlir-opt %s \ // RUN: --sparsification --sparse-tensor-conversion \ // RUN: --convert-vector-to-scf --convert-scf-to-std \ // RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \ // RUN: --std-bufferize --finalizing-bufferize \ // RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm | \ // RUN: TENSOR0="%mlir_integration_test_dir/data/test.tns" \ // RUN: mlir-cpu-runner \ // RUN: -e entry -entry-point-result=void \ // RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ // RUN: FileCheck %s !Filename = type !llvm.ptr #SparseTensor = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed", "compressed", "compressed", "compressed", "compressed", "compressed" ], // Note that any dimOrdering permutation should give the same results // since, even though it impacts the sparse storage scheme layout, // it should not change the semantics. dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)> }> #trait_flatten = { indexing_maps = [ affine_map<(i,j,k,l,m,n,o,p) -> (i,j,k,l,m,n,o,p)>, // A affine_map<(i,j,k,l,m,n,o,p) -> (i,j)> // X (out) ], iterator_types = [ "parallel", "parallel", "reduction", "reduction", "reduction", "reduction", "reduction", "reduction" ], doc = "X(i,j) += A(i,j,k,l,m,n,o,p)" } // // Integration test that lowers a kernel annotated as sparse to // actual sparse code, initializes a matching sparse storage scheme // from file, and runs the resulting code with the JIT compiler. // module { // // A kernel that flattens a rank 8 tensor into a dense matrix. // func @kernel_flatten(%arga: tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor>, %argx: tensor<7x3xf64>) -> tensor<7x3xf64> { %0 = linalg.generic #trait_flatten ins(%arga: tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor>) outs(%argx: tensor<7x3xf64>) { ^bb(%a: f64, %x: f64): %0 = addf %x, %a : f64 linalg.yield %0 : f64 } -> tensor<7x3xf64> return %0 : tensor<7x3xf64> } func private @getTensorFilename(index) -> (!Filename) // // Main driver that reads tensor from file and calls the sparse kernel. // func @entry() { %d0 = constant 0.0 : f64 %c0 = constant 0 : index %c1 = constant 1 : index %c3 = constant 3 : index %c7 = constant 7 : index // Setup matrix memory that is initialized to zero. %xdata = memref.alloc() : memref<7x3xf64> scf.for %i = %c0 to %c7 step %c1 { scf.for %j = %c0 to %c3 step %c1 { memref.store %d0, %xdata[%i, %j] : memref<7x3xf64> } } %x = memref.tensor_load %xdata : memref<7x3xf64> // Read the sparse tensor from file, construct sparse storage. %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) %a = sparse_tensor.new %fileName : !Filename to tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor> // Call the kernel. %0 = call @kernel_flatten(%a, %x) : (tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor>, tensor<7x3xf64>) -> tensor<7x3xf64> // Print the result for verification. // // CHECK: ( 6.25, 0, 0 ) // CHECK: ( 4.224, 6.21, 0 ) // CHECK: ( 0, 0, 15.455 ) // CHECK: ( 0, 0, 0 ) // CHECK: ( 0, 0, 0 ) // CHECK: ( 0, 0, 0 ) // CHECK: ( 7, 0, 0 ) // %r = memref.buffer_cast %0 : memref<7x3xf64> scf.for %i = %c0 to %c7 step %c1 { %v = vector.transfer_read %r[%i, %c0], %d0: memref<7x3xf64>, vector<3xf64> vector.print %v : vector<3xf64> } // Release the resources. memref.dealloc %xdata : memref<7x3xf64> return } }