// RUN: mlir-opt %s \ // RUN: --sparsification --sparse-tensor-conversion \ // RUN: --convert-vector-to-scf --convert-scf-to-std \ // RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \ // RUN: --std-bufferize --finalizing-bufferize \ // RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm | \ // RUN: TENSOR0="%mlir_integration_test_dir/data/wide.mtx" \ // RUN: mlir-cpu-runner \ // RUN: -e entry -entry-point-result=void \ // RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ // RUN: FileCheck %s // // Do the same run, but now with SIMDization as well. This should not change the outcome. // // RUN: mlir-opt %s \ // RUN: --sparsification="vectorization-strategy=2 vl=16 enable-simd-index32" --sparse-tensor-conversion \ // RUN: --convert-vector-to-scf --convert-scf-to-std \ // RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \ // RUN: --std-bufferize --finalizing-bufferize --lower-affine \ // RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm | \ // RUN: TENSOR0="%mlir_integration_test_dir/data/wide.mtx" \ // RUN: mlir-cpu-runner \ // RUN: -e entry -entry-point-result=void \ // RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ // RUN: FileCheck %s !Filename = type !llvm.ptr #SparseMatrix = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 8, indexBitWidth = 8 }> #matvec = { indexing_maps = [ affine_map<(i,j) -> (i,j)>, // A affine_map<(i,j) -> (j)>, // b affine_map<(i,j) -> (i)> // x (out) ], iterator_types = ["parallel", "reduction"], doc = "X(i) += A(i,j) * B(j)" } // // Integration test that lowers a kernel annotated as sparse to // actual sparse code, initializes a matching sparse storage scheme // from file, and runs the resulting code with the JIT compiler. // module { // // A kernel that multiplies a sparse matrix A with a dense vector b // into a dense vector x. // func @kernel_matvec(%arga: tensor, %argb: tensor, %argx: tensor) -> tensor { %0 = linalg.generic #matvec ins(%arga, %argb: tensor, tensor) outs(%argx: tensor) { ^bb(%a: i32, %b: i32, %x: i32): %0 = muli %a, %b : i32 %1 = addi %x, %0 : i32 linalg.yield %1 : i32 } -> tensor return %0 : tensor } func private @getTensorFilename(index) -> (!Filename) // // Main driver that reads matrix from file and calls the sparse kernel. // func @entry() { %i0 = constant 0 : i32 %c0 = constant 0 : index %c1 = constant 1 : index %c4 = constant 4 : index %c256 = constant 256 : index // Read the sparse matrix from file, construct sparse storage. %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) %a = sparse_tensor.new %fileName : !Filename to tensor // Initialize dense vectors. %bdata = memref.alloc(%c256) : memref %xdata = memref.alloc(%c4) : memref scf.for %i = %c0 to %c256 step %c1 { %k = addi %i, %c1 : index %j = index_cast %k : index to i32 memref.store %j, %bdata[%i] : memref } scf.for %i = %c0 to %c4 step %c1 { memref.store %i0, %xdata[%i] : memref } %b = memref.tensor_load %bdata : memref %x = memref.tensor_load %xdata : memref // Call kernel. %0 = call @kernel_matvec(%a, %b, %x) : (tensor, tensor, tensor) -> tensor // Print the result for verification. // // CHECK: ( 889, 1514, -21, -3431 ) // %m = memref.buffer_cast %0 : memref %v = vector.transfer_read %m[%c0], %i0: memref, vector<4xi32> vector.print %v : vector<4xi32> // Release the resources. memref.dealloc %bdata : memref memref.dealloc %xdata : memref return } }