// RUN: mlir-opt %s \ // RUN: --sparsification --sparse-tensor-conversion \ // RUN: --convert-vector-to-scf --convert-scf-to-std \ // RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \ // RUN: --std-bufferize --finalizing-bufferize \ // RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm | \ // RUN: mlir-cpu-runner \ // RUN: -e entry -entry-point-result=void \ // RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ // RUN: FileCheck %s #CSR = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }> #trait_scale = { indexing_maps = [ affine_map<(i,j) -> (i,j)> // X (out) ], iterator_types = ["parallel", "parallel"], doc = "X(i,j) = X(i,j) * 2" } // // Integration test that lowers a kernel annotated as sparse to actual sparse // code, initializes a matching sparse storage scheme from a dense tensor, // and runs the resulting code with the JIT compiler. // module { // // A kernel that scales a sparse matrix A by a factor of 2.0. // func @sparse_scale(%argx: tensor<8x8xf32, #CSR> {linalg.inplaceable = true}) -> tensor<8x8xf32, #CSR> { %c = constant 2.0 : f32 %0 = linalg.generic #trait_scale outs(%argx: tensor<8x8xf32, #CSR>) { ^bb(%x: f32): %1 = mulf %x, %c : f32 linalg.yield %1 : f32 } -> tensor<8x8xf32, #CSR> return %0 : tensor<8x8xf32, #CSR> } // // Main driver that converts a dense tensor into a sparse tensor // and then calls the sparse scaling kernel with the sparse tensor // as input argument. // func @entry() { %c0 = constant 0 : index %f0 = constant 0.0 : f32 // Initialize a dense tensor. %0 = constant dense<[ [1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 5.0, 0.0, 0.0, 0.0], [0.0, 1.0, 1.0, 0.0, 0.0, 6.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 7.0, 1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 8.0] ]> : tensor<8x8xf32> // Convert dense tensor to sparse tensor and call sparse kernel. %1 = sparse_tensor.convert %0 : tensor<8x8xf32> to tensor<8x8xf32, #CSR> %2 = call @sparse_scale(%1) : (tensor<8x8xf32, #CSR>) -> tensor<8x8xf32, #CSR> // Print the resulting compacted values for verification. // // CHECK: ( 2, 2, 2, 4, 6, 8, 2, 10, 2, 2, 12, 2, 14, 2, 2, 16 ) // %m = sparse_tensor.values %2 : tensor<8x8xf32, #CSR> to memref %v = vector.transfer_read %m[%c0], %f0: memref, vector<16xf32> vector.print %v : vector<16xf32> return } }