// RUN: mlir-opt %s \ // RUN: --sparsification --sparse-tensor-conversion \ // RUN: --convert-vector-to-scf --convert-scf-to-std \ // RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \ // RUN: --std-bufferize --finalizing-bufferize \ // RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm | \ // RUN: TENSOR0="%mlir_integration_test_dir/data/test.mtx" \ // RUN: mlir-cpu-runner \ // RUN: -e entry -entry-point-result=void \ // RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ // RUN: FileCheck %s !Filename = type !llvm.ptr #SparseMatrix = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }> #trait_sum_reduce = { indexing_maps = [ affine_map<(i,j) -> (i,j)>, // A affine_map<(i,j) -> ()> // x (out) ], iterator_types = ["reduction", "reduction"], doc = "x += A(i,j)" } // // Integration test that lowers a kernel annotated as sparse to // actual sparse code, initializes a matching sparse storage scheme // from file, and runs the resulting code with the JIT compiler. // module { // // A kernel that sum-reduces a matrix to a single scalar. // func @kernel_sum_reduce(%arga: tensor, %argx: tensor) -> tensor { %0 = linalg.generic #trait_sum_reduce ins(%arga: tensor) outs(%argx: tensor) { ^bb(%a: f64, %x: f64): %0 = addf %x, %a : f64 linalg.yield %0 : f64 } -> tensor return %0 : tensor } func private @getTensorFilename(index) -> (!Filename) // // Main driver that reads matrix from file and calls the sparse kernel. // func @entry() { %d0 = constant 0.0 : f64 %c0 = constant 0 : index // Setup memory for a single reduction scalar, // initialized to zero. %xdata = memref.alloc() : memref memref.store %d0, %xdata[] : memref %x = memref.tensor_load %xdata : memref // Read the sparse matrix from file, construct sparse storage. %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) %a = sparse_tensor.new %fileName : !Filename to tensor // Call the kernel. %0 = call @kernel_sum_reduce(%a, %x) : (tensor, tensor) -> tensor // Print the result for verification. // // CHECK: 28.2 // %m = memref.buffer_cast %0 : memref %v = memref.load %m[] : memref vector.print %v : f64 // Release the resources. memref.dealloc %xdata : memref return } }