Files
clang-p2996/flang/lib/Semantics/check-declarations.cpp
Tim Keith b297563a75 [flang] Fix erroneous application of SAVE statement
A SAVE statement with no entity list applies the SAVE attribute only to
the entities that it is allowed on. We were applying it to automatic
data objects and reporting an error that they can't have SAVE.

The fix is to change `DeclarationVisitor::CheckSaveAttr` to check for
automatic objects. That controls both checking and setting the
attribute. This allows us to remove the check from `CheckSpecExpr`
(along with `symbolBeingChecked_`). Also, it was only called on constant
objects so the non-const overload can be eliminated.

The check in `CheckSpecExpr` is replaced by an explicit check for
automatic objects in modules. This caught an error in modfile03.f90 so
that part of the test was eliminated.

Differential Revision: https://reviews.llvm.org/D83899
2020-07-15 13:02:33 -07:00

1561 lines
62 KiB
C++

//===-- lib/Semantics/check-declarations.cpp ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Static declaration checking
#include "check-declarations.h"
#include "flang/Evaluate/check-expression.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/tools.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/semantics.h"
#include "flang/Semantics/symbol.h"
#include "flang/Semantics/tools.h"
#include "flang/Semantics/type.h"
#include <algorithm>
namespace Fortran::semantics {
using evaluate::characteristics::DummyArgument;
using evaluate::characteristics::DummyDataObject;
using evaluate::characteristics::DummyProcedure;
using evaluate::characteristics::FunctionResult;
using evaluate::characteristics::Procedure;
class CheckHelper {
public:
explicit CheckHelper(SemanticsContext &c) : context_{c} {}
void Check() { Check(context_.globalScope()); }
void Check(const ParamValue &, bool canBeAssumed);
void Check(const Bound &bound) { CheckSpecExpr(bound.GetExplicit()); }
void Check(const ShapeSpec &spec) {
Check(spec.lbound());
Check(spec.ubound());
}
void Check(const ArraySpec &);
void Check(const DeclTypeSpec &, bool canHaveAssumedTypeParameters);
void Check(const Symbol &);
void Check(const Scope &);
private:
template <typename A> void CheckSpecExpr(const A &x) {
evaluate::CheckSpecificationExpr(
x, messages_, DEREF(scope_), context_.intrinsics());
}
void CheckValue(const Symbol &, const DerivedTypeSpec *);
void CheckVolatile(
const Symbol &, bool isAssociated, const DerivedTypeSpec *);
void CheckPointer(const Symbol &);
void CheckPassArg(
const Symbol &proc, const Symbol *interface, const WithPassArg &);
void CheckProcBinding(const Symbol &, const ProcBindingDetails &);
void CheckObjectEntity(const Symbol &, const ObjectEntityDetails &);
void CheckArraySpec(const Symbol &, const ArraySpec &);
void CheckProcEntity(const Symbol &, const ProcEntityDetails &);
void CheckSubprogram(const Symbol &, const SubprogramDetails &);
void CheckAssumedTypeEntity(const Symbol &, const ObjectEntityDetails &);
void CheckDerivedType(const Symbol &, const DerivedTypeDetails &);
void CheckGeneric(const Symbol &, const GenericDetails &);
std::optional<std::vector<Procedure>> Characterize(const SymbolVector &);
bool CheckDefinedOperator(const SourceName &, const GenericKind &,
const Symbol &, const Procedure &);
std::optional<parser::MessageFixedText> CheckNumberOfArgs(
const GenericKind &, std::size_t);
bool CheckDefinedOperatorArg(
const SourceName &, const Symbol &, const Procedure &, std::size_t);
bool CheckDefinedAssignment(const Symbol &, const Procedure &);
bool CheckDefinedAssignmentArg(const Symbol &, const DummyArgument &, int);
void CheckSpecificsAreDistinguishable(
const Symbol &, const GenericDetails &, const std::vector<Procedure> &);
void CheckEquivalenceSet(const EquivalenceSet &);
void CheckBlockData(const Scope &);
void SayNotDistinguishable(
const SourceName &, GenericKind, const Symbol &, const Symbol &);
bool CheckConflicting(const Symbol &, Attr, Attr);
bool InPure() const {
return innermostSymbol_ && IsPureProcedure(*innermostSymbol_);
}
bool InFunction() const {
return innermostSymbol_ && IsFunction(*innermostSymbol_);
}
template <typename... A>
void SayWithDeclaration(const Symbol &symbol, A &&... x) {
if (parser::Message * msg{messages_.Say(std::forward<A>(x)...)}) {
if (messages_.at().begin() != symbol.name().begin()) {
evaluate::AttachDeclaration(*msg, symbol);
}
}
}
bool IsResultOkToDiffer(const FunctionResult &);
SemanticsContext &context_;
evaluate::FoldingContext &foldingContext_{context_.foldingContext()};
parser::ContextualMessages &messages_{foldingContext_.messages()};
const Scope *scope_{nullptr};
// This symbol is the one attached to the innermost enclosing scope
// that has a symbol.
const Symbol *innermostSymbol_{nullptr};
};
void CheckHelper::Check(const ParamValue &value, bool canBeAssumed) {
if (value.isAssumed()) {
if (!canBeAssumed) { // C795, C721, C726
messages_.Say(
"An assumed (*) type parameter may be used only for a (non-statement"
" function) dummy argument, associate name, named constant, or"
" external function result"_err_en_US);
}
} else {
CheckSpecExpr(value.GetExplicit());
}
}
void CheckHelper::Check(const ArraySpec &shape) {
for (const auto &spec : shape) {
Check(spec);
}
}
void CheckHelper::Check(
const DeclTypeSpec &type, bool canHaveAssumedTypeParameters) {
if (type.category() == DeclTypeSpec::Character) {
Check(type.characterTypeSpec().length(), canHaveAssumedTypeParameters);
} else if (const DerivedTypeSpec * derived{type.AsDerived()}) {
for (auto &parm : derived->parameters()) {
Check(parm.second, canHaveAssumedTypeParameters);
}
}
}
void CheckHelper::Check(const Symbol &symbol) {
if (context_.HasError(symbol)) {
return;
}
const DeclTypeSpec *type{symbol.GetType()};
const DerivedTypeSpec *derived{type ? type->AsDerived() : nullptr};
auto restorer{messages_.SetLocation(symbol.name())};
context_.set_location(symbol.name());
bool isAssociated{symbol.has<UseDetails>() || symbol.has<HostAssocDetails>()};
if (symbol.attrs().test(Attr::VOLATILE)) {
CheckVolatile(symbol, isAssociated, derived);
}
if (isAssociated) {
return; // only care about checking VOLATILE on associated symbols
}
if (IsPointer(symbol)) {
CheckPointer(symbol);
}
std::visit(
common::visitors{
[&](const ProcBindingDetails &x) { CheckProcBinding(symbol, x); },
[&](const ObjectEntityDetails &x) { CheckObjectEntity(symbol, x); },
[&](const ProcEntityDetails &x) { CheckProcEntity(symbol, x); },
[&](const SubprogramDetails &x) { CheckSubprogram(symbol, x); },
[&](const DerivedTypeDetails &x) { CheckDerivedType(symbol, x); },
[&](const GenericDetails &x) { CheckGeneric(symbol, x); },
[](const auto &) {},
},
symbol.details());
if (InPure()) {
if (IsSaved(symbol)) {
messages_.Say(
"A pure subprogram may not have a variable with the SAVE attribute"_err_en_US);
}
if (symbol.attrs().test(Attr::VOLATILE)) {
messages_.Say(
"A pure subprogram may not have a variable with the VOLATILE attribute"_err_en_US);
}
if (IsProcedure(symbol) && !IsPureProcedure(symbol) && IsDummy(symbol)) {
messages_.Say(
"A dummy procedure of a pure subprogram must be pure"_err_en_US);
}
if (!IsDummy(symbol) && !IsFunctionResult(symbol)) {
if (IsPolymorphicAllocatable(symbol)) {
SayWithDeclaration(symbol,
"Deallocation of polymorphic object '%s' is not permitted in a pure subprogram"_err_en_US,
symbol.name());
} else if (derived) {
if (auto bad{FindPolymorphicAllocatableUltimateComponent(*derived)}) {
SayWithDeclaration(*bad,
"Deallocation of polymorphic object '%s%s' is not permitted in a pure subprogram"_err_en_US,
symbol.name(), bad.BuildResultDesignatorName());
}
}
}
}
if (type) { // Section 7.2, paragraph 7
bool canHaveAssumedParameter{IsNamedConstant(symbol) ||
(IsAssumedLengthCharacter(symbol) && // C722
IsExternal(symbol)) ||
symbol.test(Symbol::Flag::ParentComp)};
if (!IsStmtFunctionDummy(symbol)) { // C726
if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
canHaveAssumedParameter |= object->isDummy() ||
(object->isFuncResult() &&
type->category() == DeclTypeSpec::Character) ||
IsStmtFunctionResult(symbol); // Avoids multiple messages
} else {
canHaveAssumedParameter |= symbol.has<AssocEntityDetails>();
}
}
Check(*type, canHaveAssumedParameter);
if (InPure() && InFunction() && IsFunctionResult(symbol)) {
if (derived && HasImpureFinal(*derived)) { // C1584
messages_.Say(
"Result of pure function may not have an impure FINAL subroutine"_err_en_US);
}
if (type->IsPolymorphic() && IsAllocatable(symbol)) { // C1585
messages_.Say(
"Result of pure function may not be both polymorphic and ALLOCATABLE"_err_en_US);
}
if (derived) {
if (auto bad{FindPolymorphicAllocatableUltimateComponent(*derived)}) {
SayWithDeclaration(*bad,
"Result of pure function may not have polymorphic ALLOCATABLE ultimate component '%s'"_err_en_US,
bad.BuildResultDesignatorName());
}
}
}
}
if (IsAssumedLengthCharacter(symbol) && IsExternal(symbol)) { // C723
if (symbol.attrs().test(Attr::RECURSIVE)) {
messages_.Say(
"An assumed-length CHARACTER(*) function cannot be RECURSIVE"_err_en_US);
}
if (symbol.Rank() > 0) {
messages_.Say(
"An assumed-length CHARACTER(*) function cannot return an array"_err_en_US);
}
if (symbol.attrs().test(Attr::PURE)) {
messages_.Say(
"An assumed-length CHARACTER(*) function cannot be PURE"_err_en_US);
}
if (symbol.attrs().test(Attr::ELEMENTAL)) {
messages_.Say(
"An assumed-length CHARACTER(*) function cannot be ELEMENTAL"_err_en_US);
}
if (const Symbol * result{FindFunctionResult(symbol)}) {
if (IsPointer(*result)) {
messages_.Say(
"An assumed-length CHARACTER(*) function cannot return a POINTER"_err_en_US);
}
}
}
if (symbol.attrs().test(Attr::VALUE)) {
CheckValue(symbol, derived);
}
if (symbol.attrs().test(Attr::CONTIGUOUS) && IsPointer(symbol) &&
symbol.Rank() == 0) { // C830
messages_.Say("CONTIGUOUS POINTER must be an array"_err_en_US);
}
if (IsDummy(symbol)) {
if (IsNamedConstant(symbol)) {
messages_.Say(
"A dummy argument may not also be a named constant"_err_en_US);
}
if (IsSaved(symbol)) {
messages_.Say(
"A dummy argument may not have the SAVE attribute"_err_en_US);
}
} else if (IsFunctionResult(symbol)) {
if (IsSaved(symbol)) {
messages_.Say(
"A function result may not have the SAVE attribute"_err_en_US);
}
}
if (symbol.owner().IsDerivedType() &&
(symbol.attrs().test(Attr::CONTIGUOUS) &&
!(IsPointer(symbol) && symbol.Rank() > 0))) { // C752
messages_.Say(
"A CONTIGUOUS component must be an array with the POINTER attribute"_err_en_US);
}
if (symbol.owner().IsModule() && IsAutomatic(symbol)) {
messages_.Say(
"Automatic data object '%s' may not appear in the specification part"
" of a module"_err_en_US,
symbol.name());
}
}
void CheckHelper::CheckValue(
const Symbol &symbol, const DerivedTypeSpec *derived) { // C863 - C865
if (!IsDummy(symbol)) {
messages_.Say(
"VALUE attribute may apply only to a dummy argument"_err_en_US);
}
if (IsProcedure(symbol)) {
messages_.Say(
"VALUE attribute may apply only to a dummy data object"_err_en_US);
}
if (IsAssumedSizeArray(symbol)) {
messages_.Say(
"VALUE attribute may not apply to an assumed-size array"_err_en_US);
}
if (IsCoarray(symbol)) {
messages_.Say("VALUE attribute may not apply to a coarray"_err_en_US);
}
if (IsAllocatable(symbol)) {
messages_.Say("VALUE attribute may not apply to an ALLOCATABLE"_err_en_US);
} else if (IsPointer(symbol)) {
messages_.Say("VALUE attribute may not apply to a POINTER"_err_en_US);
}
if (IsIntentInOut(symbol)) {
messages_.Say(
"VALUE attribute may not apply to an INTENT(IN OUT) argument"_err_en_US);
} else if (IsIntentOut(symbol)) {
messages_.Say(
"VALUE attribute may not apply to an INTENT(OUT) argument"_err_en_US);
}
if (symbol.attrs().test(Attr::VOLATILE)) {
messages_.Say("VALUE attribute may not apply to a VOLATILE"_err_en_US);
}
if (innermostSymbol_ && IsBindCProcedure(*innermostSymbol_) &&
IsOptional(symbol)) {
messages_.Say(
"VALUE attribute may not apply to an OPTIONAL in a BIND(C) procedure"_err_en_US);
}
if (derived) {
if (FindCoarrayUltimateComponent(*derived)) {
messages_.Say(
"VALUE attribute may not apply to a type with a coarray ultimate component"_err_en_US);
}
}
}
void CheckHelper::CheckAssumedTypeEntity( // C709
const Symbol &symbol, const ObjectEntityDetails &details) {
if (const DeclTypeSpec * type{symbol.GetType()};
type && type->category() == DeclTypeSpec::TypeStar) {
if (!IsDummy(symbol)) {
messages_.Say(
"Assumed-type entity '%s' must be a dummy argument"_err_en_US,
symbol.name());
} else {
if (symbol.attrs().test(Attr::ALLOCATABLE)) {
messages_.Say("Assumed-type argument '%s' cannot have the ALLOCATABLE"
" attribute"_err_en_US,
symbol.name());
}
if (symbol.attrs().test(Attr::POINTER)) {
messages_.Say("Assumed-type argument '%s' cannot have the POINTER"
" attribute"_err_en_US,
symbol.name());
}
if (symbol.attrs().test(Attr::VALUE)) {
messages_.Say("Assumed-type argument '%s' cannot have the VALUE"
" attribute"_err_en_US,
symbol.name());
}
if (symbol.attrs().test(Attr::INTENT_OUT)) {
messages_.Say(
"Assumed-type argument '%s' cannot be INTENT(OUT)"_err_en_US,
symbol.name());
}
if (IsCoarray(symbol)) {
messages_.Say(
"Assumed-type argument '%s' cannot be a coarray"_err_en_US,
symbol.name());
}
if (details.IsArray() && details.shape().IsExplicitShape()) {
messages_.Say(
"Assumed-type array argument 'arg8' must be assumed shape,"
" assumed size, or assumed rank"_err_en_US,
symbol.name());
}
}
}
}
void CheckHelper::CheckObjectEntity(
const Symbol &symbol, const ObjectEntityDetails &details) {
CheckArraySpec(symbol, details.shape());
Check(details.shape());
Check(details.coshape());
CheckAssumedTypeEntity(symbol, details);
if (!details.coshape().empty()) {
bool isDeferredShape{details.coshape().IsDeferredShape()};
if (IsAllocatable(symbol)) {
if (!isDeferredShape) { // C827
messages_.Say("'%s' is an ALLOCATABLE coarray and must have a deferred"
" coshape"_err_en_US,
symbol.name());
}
} else if (symbol.owner().IsDerivedType()) { // C746
std::string deferredMsg{
isDeferredShape ? "" : " and have a deferred coshape"};
messages_.Say("Component '%s' is a coarray and must have the ALLOCATABLE"
" attribute%s"_err_en_US,
symbol.name(), deferredMsg);
} else {
if (!details.coshape().IsAssumedSize()) { // C828
messages_.Say(
"Component '%s' is a non-ALLOCATABLE coarray and must have"
" an explicit coshape"_err_en_US,
symbol.name());
}
}
}
if (details.isDummy()) {
if (symbol.attrs().test(Attr::INTENT_OUT)) {
if (FindUltimateComponent(symbol, [](const Symbol &x) {
return IsCoarray(x) && IsAllocatable(x);
})) { // C846
messages_.Say(
"An INTENT(OUT) dummy argument may not be, or contain, an ALLOCATABLE coarray"_err_en_US);
}
if (IsOrContainsEventOrLockComponent(symbol)) { // C847
messages_.Say(
"An INTENT(OUT) dummy argument may not be, or contain, EVENT_TYPE or LOCK_TYPE"_err_en_US);
}
}
if (InPure() && !IsStmtFunction(DEREF(innermostSymbol_)) &&
!IsPointer(symbol) && !IsIntentIn(symbol) &&
!symbol.attrs().test(Attr::VALUE)) {
if (InFunction()) { // C1583
messages_.Say(
"non-POINTER dummy argument of pure function must be INTENT(IN) or VALUE"_err_en_US);
} else if (IsIntentOut(symbol)) {
if (const DeclTypeSpec * type{details.type()}) {
if (type && type->IsPolymorphic()) { // C1588
messages_.Say(
"An INTENT(OUT) dummy argument of a pure subroutine may not be polymorphic"_err_en_US);
} else if (const DerivedTypeSpec * derived{type->AsDerived()}) {
if (FindUltimateComponent(*derived, [](const Symbol &x) {
const DeclTypeSpec *type{x.GetType()};
return type && type->IsPolymorphic();
})) { // C1588
messages_.Say(
"An INTENT(OUT) dummy argument of a pure subroutine may not have a polymorphic ultimate component"_err_en_US);
}
if (HasImpureFinal(*derived)) { // C1587
messages_.Say(
"An INTENT(OUT) dummy argument of a pure subroutine may not have an impure FINAL subroutine"_err_en_US);
}
}
}
} else if (!IsIntentInOut(symbol)) { // C1586
messages_.Say(
"non-POINTER dummy argument of pure subroutine must have INTENT() or VALUE attribute"_err_en_US);
}
}
}
if (symbol.owner().kind() != Scope::Kind::DerivedType &&
IsInitialized(symbol, true /*ignore DATA, already caught*/)) { // C808
if (IsAutomatic(symbol)) {
messages_.Say("An automatic variable must not be initialized"_err_en_US);
} else if (IsDummy(symbol)) {
messages_.Say("A dummy argument must not be initialized"_err_en_US);
} else if (IsFunctionResult(symbol)) {
messages_.Say("A function result must not be initialized"_err_en_US);
} else if (IsInBlankCommon(symbol)) {
messages_.Say(
"A variable in blank COMMON should not be initialized"_en_US);
}
}
if (symbol.owner().kind() == Scope::Kind::BlockData &&
IsInitialized(symbol)) {
if (IsAllocatable(symbol)) {
messages_.Say(
"An ALLOCATABLE variable may not appear in a BLOCK DATA subprogram"_err_en_US);
} else if (!FindCommonBlockContaining(symbol)) {
messages_.Say(
"An initialized variable in BLOCK DATA must be in a COMMON block"_err_en_US);
}
}
if (const DeclTypeSpec * type{details.type()}) { // C708
if (type->IsPolymorphic() &&
!(type->IsAssumedType() || IsAllocatableOrPointer(symbol) ||
IsDummy(symbol))) {
messages_.Say("CLASS entity '%s' must be a dummy argument or have "
"ALLOCATABLE or POINTER attribute"_err_en_US,
symbol.name());
}
}
}
// The six different kinds of array-specs:
// array-spec -> explicit-shape-list | deferred-shape-list
// | assumed-shape-list | implied-shape-list
// | assumed-size | assumed-rank
// explicit-shape -> [ lb : ] ub
// deferred-shape -> :
// assumed-shape -> [ lb ] :
// implied-shape -> [ lb : ] *
// assumed-size -> [ explicit-shape-list , ] [ lb : ] *
// assumed-rank -> ..
// Note:
// - deferred-shape is also an assumed-shape
// - A single "*" or "lb:*" might be assumed-size or implied-shape-list
void CheckHelper::CheckArraySpec(
const Symbol &symbol, const ArraySpec &arraySpec) {
if (arraySpec.Rank() == 0) {
return;
}
bool isExplicit{arraySpec.IsExplicitShape()};
bool isDeferred{arraySpec.IsDeferredShape()};
bool isImplied{arraySpec.IsImpliedShape()};
bool isAssumedShape{arraySpec.IsAssumedShape()};
bool isAssumedSize{arraySpec.IsAssumedSize()};
bool isAssumedRank{arraySpec.IsAssumedRank()};
std::optional<parser::MessageFixedText> msg;
if (symbol.test(Symbol::Flag::CrayPointee) && !isExplicit && !isAssumedSize) {
msg = "Cray pointee '%s' must have must have explicit shape or"
" assumed size"_err_en_US;
} else if (IsAllocatableOrPointer(symbol) && !isDeferred && !isAssumedRank) {
if (symbol.owner().IsDerivedType()) { // C745
if (IsAllocatable(symbol)) {
msg = "Allocatable array component '%s' must have"
" deferred shape"_err_en_US;
} else {
msg = "Array pointer component '%s' must have deferred shape"_err_en_US;
}
} else {
if (IsAllocatable(symbol)) { // C832
msg = "Allocatable array '%s' must have deferred shape or"
" assumed rank"_err_en_US;
} else {
msg = "Array pointer '%s' must have deferred shape or"
" assumed rank"_err_en_US;
}
}
} else if (IsDummy(symbol)) {
if (isImplied && !isAssumedSize) { // C836
msg = "Dummy array argument '%s' may not have implied shape"_err_en_US;
}
} else if (isAssumedShape && !isDeferred) {
msg = "Assumed-shape array '%s' must be a dummy argument"_err_en_US;
} else if (isAssumedSize && !isImplied) { // C833
msg = "Assumed-size array '%s' must be a dummy argument"_err_en_US;
} else if (isAssumedRank) { // C837
msg = "Assumed-rank array '%s' must be a dummy argument"_err_en_US;
} else if (isImplied) {
if (!IsNamedConstant(symbol)) { // C836
msg = "Implied-shape array '%s' must be a named constant"_err_en_US;
}
} else if (IsNamedConstant(symbol)) {
if (!isExplicit && !isImplied) {
msg = "Named constant '%s' array must have explicit or"
" implied shape"_err_en_US;
}
} else if (!IsAllocatableOrPointer(symbol) && !isExplicit) {
if (symbol.owner().IsDerivedType()) { // C749
msg = "Component array '%s' without ALLOCATABLE or POINTER attribute must"
" have explicit shape"_err_en_US;
} else { // C816
msg = "Array '%s' without ALLOCATABLE or POINTER attribute must have"
" explicit shape"_err_en_US;
}
}
if (msg) {
context_.Say(std::move(*msg), symbol.name());
}
}
void CheckHelper::CheckProcEntity(
const Symbol &symbol, const ProcEntityDetails &details) {
if (details.isDummy()) {
const Symbol *interface{details.interface().symbol()};
if (!symbol.attrs().test(Attr::INTRINSIC) &&
(symbol.attrs().test(Attr::ELEMENTAL) ||
(interface && !interface->attrs().test(Attr::INTRINSIC) &&
interface->attrs().test(Attr::ELEMENTAL)))) {
// There's no explicit constraint or "shall" that we can find in the
// standard for this check, but it seems to be implied in multiple
// sites, and ELEMENTAL non-intrinsic actual arguments *are*
// explicitly forbidden. But we allow "PROCEDURE(SIN)::dummy"
// because it is explicitly legal to *pass* the specific intrinsic
// function SIN as an actual argument.
messages_.Say("A dummy procedure may not be ELEMENTAL"_err_en_US);
}
} else if (symbol.owner().IsDerivedType()) {
if (!symbol.attrs().test(Attr::POINTER)) { // C756
const auto &name{symbol.name()};
messages_.Say(name,
"Procedure component '%s' must have POINTER attribute"_err_en_US,
name);
}
CheckPassArg(symbol, details.interface().symbol(), details);
}
if (symbol.attrs().test(Attr::POINTER)) {
if (const Symbol * interface{details.interface().symbol()}) {
if (interface->attrs().test(Attr::ELEMENTAL) &&
!interface->attrs().test(Attr::INTRINSIC)) {
messages_.Say("Procedure pointer '%s' may not be ELEMENTAL"_err_en_US,
symbol.name()); // C1517
}
}
} else if (symbol.attrs().test(Attr::SAVE)) {
messages_.Say(
"Procedure '%s' with SAVE attribute must also have POINTER attribute"_err_en_US,
symbol.name());
}
}
// When a module subprogram has the MODULE prefix the following must match
// with the corresponding separate module procedure interface body:
// - C1549: characteristics and dummy argument names
// - C1550: binding label
// - C1551: NON_RECURSIVE prefix
class SubprogramMatchHelper {
public:
explicit SubprogramMatchHelper(SemanticsContext &context)
: context{context} {}
void Check(const Symbol &, const Symbol &);
private:
void CheckDummyArg(const Symbol &, const Symbol &, const DummyArgument &,
const DummyArgument &);
void CheckDummyDataObject(const Symbol &, const Symbol &,
const DummyDataObject &, const DummyDataObject &);
void CheckDummyProcedure(const Symbol &, const Symbol &,
const DummyProcedure &, const DummyProcedure &);
bool CheckSameIntent(
const Symbol &, const Symbol &, common::Intent, common::Intent);
template <typename... A>
void Say(
const Symbol &, const Symbol &, parser::MessageFixedText &&, A &&...);
template <typename ATTRS>
bool CheckSameAttrs(const Symbol &, const Symbol &, ATTRS, ATTRS);
bool ShapesAreCompatible(const DummyDataObject &, const DummyDataObject &);
evaluate::Shape FoldShape(const evaluate::Shape &);
std::string AsFortran(DummyDataObject::Attr attr) {
return parser::ToUpperCaseLetters(DummyDataObject::EnumToString(attr));
}
std::string AsFortran(DummyProcedure::Attr attr) {
return parser::ToUpperCaseLetters(DummyProcedure::EnumToString(attr));
}
SemanticsContext &context;
};
// 15.6.2.6 para 3 - can the result of an ENTRY differ from its function?
bool CheckHelper::IsResultOkToDiffer(const FunctionResult &result) {
if (result.attrs.test(FunctionResult::Attr::Allocatable) ||
result.attrs.test(FunctionResult::Attr::Pointer)) {
return false;
}
const auto *typeAndShape{result.GetTypeAndShape()};
if (!typeAndShape || typeAndShape->Rank() != 0) {
return false;
}
auto category{typeAndShape->type().category()};
if (category == TypeCategory::Character ||
category == TypeCategory::Derived) {
return false;
}
int kind{typeAndShape->type().kind()};
return kind == context_.GetDefaultKind(category) ||
(category == TypeCategory::Real &&
kind == context_.doublePrecisionKind());
}
void CheckHelper::CheckSubprogram(
const Symbol &symbol, const SubprogramDetails &details) {
if (const Symbol * iface{FindSeparateModuleSubprogramInterface(&symbol)}) {
SubprogramMatchHelper{context_}.Check(symbol, *iface);
}
if (const Scope * entryScope{details.entryScope()}) {
// ENTRY 15.6.2.6, esp. C1571
std::optional<parser::MessageFixedText> error;
const Symbol *subprogram{entryScope->symbol()};
const SubprogramDetails *subprogramDetails{nullptr};
if (subprogram) {
subprogramDetails = subprogram->detailsIf<SubprogramDetails>();
}
if (entryScope->kind() != Scope::Kind::Subprogram) {
error = "ENTRY may appear only in a subroutine or function"_err_en_US;
} else if (!(entryScope->parent().IsGlobal() ||
entryScope->parent().IsModule() ||
entryScope->parent().IsSubmodule())) {
error = "ENTRY may not appear in an internal subprogram"_err_en_US;
} else if (FindSeparateModuleSubprogramInterface(subprogram)) {
error = "ENTRY may not appear in a separate module procedure"_err_en_US;
} else if (subprogramDetails && details.isFunction() &&
subprogramDetails->isFunction()) {
auto result{FunctionResult::Characterize(
details.result(), context_.intrinsics())};
auto subpResult{FunctionResult::Characterize(
subprogramDetails->result(), context_.intrinsics())};
if (result && subpResult && *result != *subpResult &&
(!IsResultOkToDiffer(*result) || !IsResultOkToDiffer(*subpResult))) {
error =
"Result of ENTRY is not compatible with result of containing function"_err_en_US;
}
}
if (error) {
if (auto *msg{messages_.Say(symbol.name(), *error)}) {
if (subprogram) {
msg->Attach(subprogram->name(), "Containing subprogram"_en_US);
}
}
}
}
}
void CheckHelper::CheckDerivedType(
const Symbol &symbol, const DerivedTypeDetails &details) {
const Scope *scope{symbol.scope()};
if (!scope) {
CHECK(details.isForwardReferenced());
return;
}
CHECK(scope->symbol() == &symbol);
CHECK(scope->IsDerivedType());
if (symbol.attrs().test(Attr::ABSTRACT) && // C734
(symbol.attrs().test(Attr::BIND_C) || details.sequence())) {
messages_.Say("An ABSTRACT derived type must be extensible"_err_en_US);
}
if (const DeclTypeSpec * parent{FindParentTypeSpec(symbol)}) {
const DerivedTypeSpec *parentDerived{parent->AsDerived()};
if (!IsExtensibleType(parentDerived)) { // C705
messages_.Say("The parent type is not extensible"_err_en_US);
}
if (!symbol.attrs().test(Attr::ABSTRACT) && parentDerived &&
parentDerived->typeSymbol().attrs().test(Attr::ABSTRACT)) {
ScopeComponentIterator components{*parentDerived};
for (const Symbol &component : components) {
if (component.attrs().test(Attr::DEFERRED)) {
if (scope->FindComponent(component.name()) == &component) {
SayWithDeclaration(component,
"Non-ABSTRACT extension of ABSTRACT derived type '%s' lacks a binding for DEFERRED procedure '%s'"_err_en_US,
parentDerived->typeSymbol().name(), component.name());
}
}
}
}
DerivedTypeSpec derived{symbol.name(), symbol};
derived.set_scope(*scope);
if (FindCoarrayUltimateComponent(derived) && // C736
!(parentDerived && FindCoarrayUltimateComponent(*parentDerived))) {
messages_.Say(
"Type '%s' has a coarray ultimate component so the type at the base "
"of its type extension chain ('%s') must be a type that has a "
"coarray ultimate component"_err_en_US,
symbol.name(), scope->GetDerivedTypeBase().GetSymbol()->name());
}
if (FindEventOrLockPotentialComponent(derived) && // C737
!(FindEventOrLockPotentialComponent(*parentDerived) ||
IsEventTypeOrLockType(parentDerived))) {
messages_.Say(
"Type '%s' has an EVENT_TYPE or LOCK_TYPE component, so the type "
"at the base of its type extension chain ('%s') must either have an "
"EVENT_TYPE or LOCK_TYPE component, or be EVENT_TYPE or "
"LOCK_TYPE"_err_en_US,
symbol.name(), scope->GetDerivedTypeBase().GetSymbol()->name());
}
}
if (HasIntrinsicTypeName(symbol)) { // C729
messages_.Say("A derived type name cannot be the name of an intrinsic"
" type"_err_en_US);
}
}
void CheckHelper::CheckGeneric(
const Symbol &symbol, const GenericDetails &details) {
const SymbolVector &specifics{details.specificProcs()};
const auto &bindingNames{details.bindingNames()};
std::optional<std::vector<Procedure>> procs{Characterize(specifics)};
if (!procs) {
return;
}
bool ok{true};
if (details.kind().IsIntrinsicOperator()) {
for (std::size_t i{0}; i < specifics.size(); ++i) {
auto restorer{messages_.SetLocation(bindingNames[i])};
ok &= CheckDefinedOperator(
symbol.name(), details.kind(), specifics[i], (*procs)[i]);
}
}
if (details.kind().IsAssignment()) {
for (std::size_t i{0}; i < specifics.size(); ++i) {
auto restorer{messages_.SetLocation(bindingNames[i])};
ok &= CheckDefinedAssignment(specifics[i], (*procs)[i]);
}
}
if (ok) {
CheckSpecificsAreDistinguishable(symbol, details, *procs);
}
}
// Check that the specifics of this generic are distinguishable from each other
void CheckHelper::CheckSpecificsAreDistinguishable(const Symbol &generic,
const GenericDetails &details, const std::vector<Procedure> &procs) {
const SymbolVector &specifics{details.specificProcs()};
std::size_t count{specifics.size()};
if (count < 2) {
return;
}
GenericKind kind{details.kind()};
auto distinguishable{kind.IsAssignment() || kind.IsOperator()
? evaluate::characteristics::DistinguishableOpOrAssign
: evaluate::characteristics::Distinguishable};
for (std::size_t i1{0}; i1 < count - 1; ++i1) {
auto &proc1{procs[i1]};
for (std::size_t i2{i1 + 1}; i2 < count; ++i2) {
auto &proc2{procs[i2]};
if (!distinguishable(proc1, proc2)) {
SayNotDistinguishable(
generic.name(), kind, specifics[i1], specifics[i2]);
}
}
}
}
void CheckHelper::SayNotDistinguishable(const SourceName &name,
GenericKind kind, const Symbol &proc1, const Symbol &proc2) {
auto &&text{kind.IsDefinedOperator()
? "Generic operator '%s' may not have specific procedures '%s'"
" and '%s' as their interfaces are not distinguishable"_err_en_US
: "Generic '%s' may not have specific procedures '%s'"
" and '%s' as their interfaces are not distinguishable"_err_en_US};
auto &msg{
context_.Say(name, std::move(text), name, proc1.name(), proc2.name())};
evaluate::AttachDeclaration(msg, proc1);
evaluate::AttachDeclaration(msg, proc2);
}
static bool ConflictsWithIntrinsicAssignment(const Procedure &proc) {
auto lhs{std::get<DummyDataObject>(proc.dummyArguments[0].u).type};
auto rhs{std::get<DummyDataObject>(proc.dummyArguments[1].u).type};
return Tristate::No ==
IsDefinedAssignment(lhs.type(), lhs.Rank(), rhs.type(), rhs.Rank());
}
static bool ConflictsWithIntrinsicOperator(
const GenericKind &kind, const Procedure &proc) {
auto arg0{std::get<DummyDataObject>(proc.dummyArguments[0].u).type};
auto type0{arg0.type()};
if (proc.dummyArguments.size() == 1) { // unary
return std::visit(
common::visitors{
[&](common::NumericOperator) { return IsIntrinsicNumeric(type0); },
[&](common::LogicalOperator) { return IsIntrinsicLogical(type0); },
[](const auto &) -> bool { DIE("bad generic kind"); },
},
kind.u);
} else { // binary
int rank0{arg0.Rank()};
auto arg1{std::get<DummyDataObject>(proc.dummyArguments[1].u).type};
auto type1{arg1.type()};
int rank1{arg1.Rank()};
return std::visit(
common::visitors{
[&](common::NumericOperator) {
return IsIntrinsicNumeric(type0, rank0, type1, rank1);
},
[&](common::LogicalOperator) {
return IsIntrinsicLogical(type0, rank0, type1, rank1);
},
[&](common::RelationalOperator opr) {
return IsIntrinsicRelational(opr, type0, rank0, type1, rank1);
},
[&](GenericKind::OtherKind x) {
CHECK(x == GenericKind::OtherKind::Concat);
return IsIntrinsicConcat(type0, rank0, type1, rank1);
},
[](const auto &) -> bool { DIE("bad generic kind"); },
},
kind.u);
}
}
// Check if this procedure can be used for defined operators (see 15.4.3.4.2).
bool CheckHelper::CheckDefinedOperator(const SourceName &opName,
const GenericKind &kind, const Symbol &specific, const Procedure &proc) {
std::optional<parser::MessageFixedText> msg;
if (specific.attrs().test(Attr::NOPASS)) { // C774
msg = "%s procedure '%s' may not have NOPASS attribute"_err_en_US;
} else if (!proc.functionResult.has_value()) {
msg = "%s procedure '%s' must be a function"_err_en_US;
} else if (proc.functionResult->IsAssumedLengthCharacter()) {
msg = "%s function '%s' may not have assumed-length CHARACTER(*)"
" result"_err_en_US;
} else if (auto m{CheckNumberOfArgs(kind, proc.dummyArguments.size())}) {
msg = std::move(m);
} else if (!CheckDefinedOperatorArg(opName, specific, proc, 0) |
!CheckDefinedOperatorArg(opName, specific, proc, 1)) {
return false; // error was reported
} else if (ConflictsWithIntrinsicOperator(kind, proc)) {
msg = "%s function '%s' conflicts with intrinsic operator"_err_en_US;
} else {
return true; // OK
}
SayWithDeclaration(specific, std::move(msg.value()),
parser::ToUpperCaseLetters(opName.ToString()), specific.name());
return false;
}
// If the number of arguments is wrong for this intrinsic operator, return
// false and return the error message in msg.
std::optional<parser::MessageFixedText> CheckHelper::CheckNumberOfArgs(
const GenericKind &kind, std::size_t nargs) {
std::size_t min{2}, max{2}; // allowed number of args; default is binary
std::visit(common::visitors{
[&](const common::NumericOperator &x) {
if (x == common::NumericOperator::Add ||
x == common::NumericOperator::Subtract) {
min = 1; // + and - are unary or binary
}
},
[&](const common::LogicalOperator &x) {
if (x == common::LogicalOperator::Not) {
min = 1; // .NOT. is unary
max = 1;
}
},
[](const common::RelationalOperator &) {
// all are binary
},
[](const GenericKind::OtherKind &x) {
CHECK(x == GenericKind::OtherKind::Concat);
},
[](const auto &) { DIE("expected intrinsic operator"); },
},
kind.u);
if (nargs >= min && nargs <= max) {
return std::nullopt;
} else if (max == 1) {
return "%s function '%s' must have one dummy argument"_err_en_US;
} else if (min == 2) {
return "%s function '%s' must have two dummy arguments"_err_en_US;
} else {
return "%s function '%s' must have one or two dummy arguments"_err_en_US;
}
}
bool CheckHelper::CheckDefinedOperatorArg(const SourceName &opName,
const Symbol &symbol, const Procedure &proc, std::size_t pos) {
if (pos >= proc.dummyArguments.size()) {
return true;
}
auto &arg{proc.dummyArguments.at(pos)};
std::optional<parser::MessageFixedText> msg;
if (arg.IsOptional()) {
msg = "In %s function '%s', dummy argument '%s' may not be"
" OPTIONAL"_err_en_US;
} else if (const auto *dataObject{std::get_if<DummyDataObject>(&arg.u)};
dataObject == nullptr) {
msg = "In %s function '%s', dummy argument '%s' must be a"
" data object"_err_en_US;
} else if (dataObject->intent != common::Intent::In &&
!dataObject->attrs.test(DummyDataObject::Attr::Value)) {
msg = "In %s function '%s', dummy argument '%s' must have INTENT(IN)"
" or VALUE attribute"_err_en_US;
}
if (msg) {
SayWithDeclaration(symbol, std::move(*msg),
parser::ToUpperCaseLetters(opName.ToString()), symbol.name(), arg.name);
return false;
}
return true;
}
// Check if this procedure can be used for defined assignment (see 15.4.3.4.3).
bool CheckHelper::CheckDefinedAssignment(
const Symbol &specific, const Procedure &proc) {
std::optional<parser::MessageFixedText> msg;
if (specific.attrs().test(Attr::NOPASS)) { // C774
msg = "Defined assignment procedure '%s' may not have"
" NOPASS attribute"_err_en_US;
} else if (!proc.IsSubroutine()) {
msg = "Defined assignment procedure '%s' must be a subroutine"_err_en_US;
} else if (proc.dummyArguments.size() != 2) {
msg = "Defined assignment subroutine '%s' must have"
" two dummy arguments"_err_en_US;
} else if (!CheckDefinedAssignmentArg(specific, proc.dummyArguments[0], 0) |
!CheckDefinedAssignmentArg(specific, proc.dummyArguments[1], 1)) {
return false; // error was reported
} else if (ConflictsWithIntrinsicAssignment(proc)) {
msg = "Defined assignment subroutine '%s' conflicts with"
" intrinsic assignment"_err_en_US;
} else {
return true; // OK
}
SayWithDeclaration(specific, std::move(msg.value()), specific.name());
return false;
}
bool CheckHelper::CheckDefinedAssignmentArg(
const Symbol &symbol, const DummyArgument &arg, int pos) {
std::optional<parser::MessageFixedText> msg;
if (arg.IsOptional()) {
msg = "In defined assignment subroutine '%s', dummy argument '%s'"
" may not be OPTIONAL"_err_en_US;
} else if (const auto *dataObject{std::get_if<DummyDataObject>(&arg.u)}) {
if (pos == 0) {
if (dataObject->intent != common::Intent::Out &&
dataObject->intent != common::Intent::InOut) {
msg = "In defined assignment subroutine '%s', first dummy argument '%s'"
" must have INTENT(OUT) or INTENT(INOUT)"_err_en_US;
}
} else if (pos == 1) {
if (dataObject->intent != common::Intent::In &&
!dataObject->attrs.test(DummyDataObject::Attr::Value)) {
msg =
"In defined assignment subroutine '%s', second dummy"
" argument '%s' must have INTENT(IN) or VALUE attribute"_err_en_US;
}
} else {
DIE("pos must be 0 or 1");
}
} else {
msg = "In defined assignment subroutine '%s', dummy argument '%s'"
" must be a data object"_err_en_US;
}
if (msg) {
SayWithDeclaration(symbol, std::move(*msg), symbol.name(), arg.name);
return false;
}
return true;
}
// Report a conflicting attribute error if symbol has both of these attributes
bool CheckHelper::CheckConflicting(const Symbol &symbol, Attr a1, Attr a2) {
if (symbol.attrs().test(a1) && symbol.attrs().test(a2)) {
messages_.Say("'%s' may not have both the %s and %s attributes"_err_en_US,
symbol.name(), EnumToString(a1), EnumToString(a2));
return true;
} else {
return false;
}
}
std::optional<std::vector<Procedure>> CheckHelper::Characterize(
const SymbolVector &specifics) {
std::vector<Procedure> result;
for (const Symbol &specific : specifics) {
auto proc{Procedure::Characterize(specific, context_.intrinsics())};
if (!proc || context_.HasError(specific)) {
return std::nullopt;
}
result.emplace_back(*proc);
}
return result;
}
void CheckHelper::CheckVolatile(const Symbol &symbol, bool isAssociated,
const DerivedTypeSpec *derived) { // C866 - C868
if (IsIntentIn(symbol)) {
messages_.Say(
"VOLATILE attribute may not apply to an INTENT(IN) argument"_err_en_US);
}
if (IsProcedure(symbol)) {
messages_.Say("VOLATILE attribute may apply only to a variable"_err_en_US);
}
if (isAssociated) {
const Symbol &ultimate{symbol.GetUltimate()};
if (IsCoarray(ultimate)) {
messages_.Say(
"VOLATILE attribute may not apply to a coarray accessed by USE or host association"_err_en_US);
}
if (derived) {
if (FindCoarrayUltimateComponent(*derived)) {
messages_.Say(
"VOLATILE attribute may not apply to a type with a coarray ultimate component accessed by USE or host association"_err_en_US);
}
}
}
}
void CheckHelper::CheckPointer(const Symbol &symbol) { // C852
CheckConflicting(symbol, Attr::POINTER, Attr::TARGET);
CheckConflicting(symbol, Attr::POINTER, Attr::ALLOCATABLE); // C751
CheckConflicting(symbol, Attr::POINTER, Attr::INTRINSIC);
if (symbol.Corank() > 0) {
messages_.Say(
"'%s' may not have the POINTER attribute because it is a coarray"_err_en_US,
symbol.name());
}
}
// C760 constraints on the passed-object dummy argument
// C757 constraints on procedure pointer components
void CheckHelper::CheckPassArg(
const Symbol &proc, const Symbol *interface, const WithPassArg &details) {
if (proc.attrs().test(Attr::NOPASS)) {
return;
}
const auto &name{proc.name()};
if (!interface) {
messages_.Say(name,
"Procedure component '%s' must have NOPASS attribute or explicit interface"_err_en_US,
name);
return;
}
const auto *subprogram{interface->detailsIf<SubprogramDetails>()};
if (!subprogram) {
messages_.Say(name,
"Procedure component '%s' has invalid interface '%s'"_err_en_US, name,
interface->name());
return;
}
std::optional<SourceName> passName{details.passName()};
const auto &dummyArgs{subprogram->dummyArgs()};
if (!passName) {
if (dummyArgs.empty()) {
messages_.Say(name,
proc.has<ProcEntityDetails>()
? "Procedure component '%s' with no dummy arguments"
" must have NOPASS attribute"_err_en_US
: "Procedure binding '%s' with no dummy arguments"
" must have NOPASS attribute"_err_en_US,
name);
return;
}
passName = dummyArgs[0]->name();
}
std::optional<int> passArgIndex{};
for (std::size_t i{0}; i < dummyArgs.size(); ++i) {
if (dummyArgs[i] && dummyArgs[i]->name() == *passName) {
passArgIndex = i;
break;
}
}
if (!passArgIndex) { // C758
messages_.Say(*passName,
"'%s' is not a dummy argument of procedure interface '%s'"_err_en_US,
*passName, interface->name());
return;
}
const Symbol &passArg{*dummyArgs[*passArgIndex]};
std::optional<parser::MessageFixedText> msg;
if (!passArg.has<ObjectEntityDetails>()) {
msg = "Passed-object dummy argument '%s' of procedure '%s'"
" must be a data object"_err_en_US;
} else if (passArg.attrs().test(Attr::POINTER)) {
msg = "Passed-object dummy argument '%s' of procedure '%s'"
" may not have the POINTER attribute"_err_en_US;
} else if (passArg.attrs().test(Attr::ALLOCATABLE)) {
msg = "Passed-object dummy argument '%s' of procedure '%s'"
" may not have the ALLOCATABLE attribute"_err_en_US;
} else if (passArg.attrs().test(Attr::VALUE)) {
msg = "Passed-object dummy argument '%s' of procedure '%s'"
" may not have the VALUE attribute"_err_en_US;
} else if (passArg.Rank() > 0) {
msg = "Passed-object dummy argument '%s' of procedure '%s'"
" must be scalar"_err_en_US;
}
if (msg) {
messages_.Say(name, std::move(*msg), passName.value(), name);
return;
}
const DeclTypeSpec *type{passArg.GetType()};
if (!type) {
return; // an error already occurred
}
const Symbol &typeSymbol{*proc.owner().GetSymbol()};
const DerivedTypeSpec *derived{type->AsDerived()};
if (!derived || derived->typeSymbol() != typeSymbol) {
messages_.Say(name,
"Passed-object dummy argument '%s' of procedure '%s'"
" must be of type '%s' but is '%s'"_err_en_US,
passName.value(), name, typeSymbol.name(), type->AsFortran());
return;
}
if (IsExtensibleType(derived) != type->IsPolymorphic()) {
messages_.Say(name,
type->IsPolymorphic()
? "Passed-object dummy argument '%s' of procedure '%s'"
" may not be polymorphic because '%s' is not extensible"_err_en_US
: "Passed-object dummy argument '%s' of procedure '%s'"
" must be polymorphic because '%s' is extensible"_err_en_US,
passName.value(), name, typeSymbol.name());
return;
}
for (const auto &[paramName, paramValue] : derived->parameters()) {
if (paramValue.isLen() && !paramValue.isAssumed()) {
messages_.Say(name,
"Passed-object dummy argument '%s' of procedure '%s'"
" has non-assumed length parameter '%s'"_err_en_US,
passName.value(), name, paramName);
}
}
}
void CheckHelper::CheckProcBinding(
const Symbol &symbol, const ProcBindingDetails &binding) {
const Scope &dtScope{symbol.owner()};
CHECK(dtScope.kind() == Scope::Kind::DerivedType);
if (const Symbol * dtSymbol{dtScope.symbol()}) {
if (symbol.attrs().test(Attr::DEFERRED)) {
if (!dtSymbol->attrs().test(Attr::ABSTRACT)) { // C733
SayWithDeclaration(*dtSymbol,
"Procedure bound to non-ABSTRACT derived type '%s' may not be DEFERRED"_err_en_US,
dtSymbol->name());
}
if (symbol.attrs().test(Attr::NON_OVERRIDABLE)) {
messages_.Say(
"Type-bound procedure '%s' may not be both DEFERRED and NON_OVERRIDABLE"_err_en_US,
symbol.name());
}
}
}
if (const Symbol * overridden{FindOverriddenBinding(symbol)}) {
if (overridden->attrs().test(Attr::NON_OVERRIDABLE)) {
SayWithDeclaration(*overridden,
"Override of NON_OVERRIDABLE '%s' is not permitted"_err_en_US,
symbol.name());
}
if (const auto *overriddenBinding{
overridden->detailsIf<ProcBindingDetails>()}) {
if (!IsPureProcedure(symbol) && IsPureProcedure(*overridden)) {
SayWithDeclaration(*overridden,
"An overridden pure type-bound procedure binding must also be pure"_err_en_US);
return;
}
if (!binding.symbol().attrs().test(Attr::ELEMENTAL) &&
overriddenBinding->symbol().attrs().test(Attr::ELEMENTAL)) {
SayWithDeclaration(*overridden,
"A type-bound procedure and its override must both, or neither, be ELEMENTAL"_err_en_US);
return;
}
bool isNopass{symbol.attrs().test(Attr::NOPASS)};
if (isNopass != overridden->attrs().test(Attr::NOPASS)) {
SayWithDeclaration(*overridden,
isNopass
? "A NOPASS type-bound procedure may not override a passed-argument procedure"_err_en_US
: "A passed-argument type-bound procedure may not override a NOPASS procedure"_err_en_US);
} else {
auto bindingChars{evaluate::characteristics::Procedure::Characterize(
binding.symbol(), context_.intrinsics())};
auto overriddenChars{evaluate::characteristics::Procedure::Characterize(
overriddenBinding->symbol(), context_.intrinsics())};
if (bindingChars && overriddenChars) {
if (isNopass) {
if (!bindingChars->CanOverride(*overriddenChars, std::nullopt)) {
SayWithDeclaration(*overridden,
"A type-bound procedure and its override must have compatible interfaces"_err_en_US);
}
} else {
int passIndex{bindingChars->FindPassIndex(binding.passName())};
int overriddenPassIndex{
overriddenChars->FindPassIndex(overriddenBinding->passName())};
if (passIndex != overriddenPassIndex) {
SayWithDeclaration(*overridden,
"A type-bound procedure and its override must use the same PASS argument"_err_en_US);
} else if (!bindingChars->CanOverride(
*overriddenChars, passIndex)) {
SayWithDeclaration(*overridden,
"A type-bound procedure and its override must have compatible interfaces apart from their passed argument"_err_en_US);
}
}
}
}
if (symbol.attrs().test(Attr::PRIVATE) &&
overridden->attrs().test(Attr::PUBLIC)) {
SayWithDeclaration(*overridden,
"A PRIVATE procedure may not override a PUBLIC procedure"_err_en_US);
}
} else {
SayWithDeclaration(*overridden,
"A type-bound procedure binding may not have the same name as a parent component"_err_en_US);
}
}
CheckPassArg(symbol, &binding.symbol(), binding);
}
void CheckHelper::Check(const Scope &scope) {
scope_ = &scope;
common::Restorer<const Symbol *> restorer{innermostSymbol_};
if (const Symbol * symbol{scope.symbol()}) {
innermostSymbol_ = symbol;
} else if (scope.IsDerivedType()) {
return; // PDT instantiations have null symbol()
}
for (const auto &set : scope.equivalenceSets()) {
CheckEquivalenceSet(set);
}
for (const auto &pair : scope) {
Check(*pair.second);
}
for (const Scope &child : scope.children()) {
Check(child);
}
if (scope.kind() == Scope::Kind::BlockData) {
CheckBlockData(scope);
}
}
void CheckHelper::CheckEquivalenceSet(const EquivalenceSet &set) {
auto iter{
std::find_if(set.begin(), set.end(), [](const EquivalenceObject &object) {
return FindCommonBlockContaining(object.symbol) != nullptr;
})};
if (iter != set.end()) {
const Symbol &commonBlock{DEREF(FindCommonBlockContaining(iter->symbol))};
for (auto &object : set) {
if (&object != &*iter) {
if (auto *details{object.symbol.detailsIf<ObjectEntityDetails>()}) {
if (details->commonBlock()) {
if (details->commonBlock() != &commonBlock) { // 8.10.3 paragraph 1
if (auto *msg{messages_.Say(object.symbol.name(),
"Two objects in the same EQUIVALENCE set may not be members of distinct COMMON blocks"_err_en_US)}) {
msg->Attach(iter->symbol.name(),
"Other object in EQUIVALENCE set"_en_US)
.Attach(details->commonBlock()->name(),
"COMMON block containing '%s'"_en_US,
object.symbol.name())
.Attach(commonBlock.name(),
"COMMON block containing '%s'"_en_US,
iter->symbol.name());
}
}
} else {
// Mark all symbols in the equivalence set with the same COMMON
// block to prevent spurious error messages about initialization
// in BLOCK DATA outside COMMON
details->set_commonBlock(commonBlock);
}
}
}
}
}
// TODO: Move C8106 (&al.) checks here from resolve-names-utils.cpp
}
void CheckHelper::CheckBlockData(const Scope &scope) {
// BLOCK DATA subprograms should contain only named common blocks.
// C1415 presents a list of statements that shouldn't appear in
// BLOCK DATA, but so long as the subprogram contains no executable
// code and allocates no storage outside named COMMON, we're happy
// (e.g., an ENUM is strictly not allowed).
for (const auto &pair : scope) {
const Symbol &symbol{*pair.second};
if (!(symbol.has<CommonBlockDetails>() || symbol.has<UseDetails>() ||
symbol.has<UseErrorDetails>() || symbol.has<DerivedTypeDetails>() ||
symbol.has<SubprogramDetails>() ||
symbol.has<ObjectEntityDetails>() ||
(symbol.has<ProcEntityDetails>() &&
!symbol.attrs().test(Attr::POINTER)))) {
messages_.Say(symbol.name(),
"'%s' may not appear in a BLOCK DATA subprogram"_err_en_US,
symbol.name());
}
}
}
void SubprogramMatchHelper::Check(
const Symbol &symbol1, const Symbol &symbol2) {
const auto details1{symbol1.get<SubprogramDetails>()};
const auto details2{symbol2.get<SubprogramDetails>()};
if (details1.isFunction() != details2.isFunction()) {
Say(symbol1, symbol2,
details1.isFunction()
? "Module function '%s' was declared as a subroutine in the"
" corresponding interface body"_err_en_US
: "Module subroutine '%s' was declared as a function in the"
" corresponding interface body"_err_en_US);
return;
}
const auto &args1{details1.dummyArgs()};
const auto &args2{details2.dummyArgs()};
int nargs1{static_cast<int>(args1.size())};
int nargs2{static_cast<int>(args2.size())};
if (nargs1 != nargs2) {
Say(symbol1, symbol2,
"Module subprogram '%s' has %d args but the corresponding interface"
" body has %d"_err_en_US,
nargs1, nargs2);
return;
}
bool nonRecursive1{symbol1.attrs().test(Attr::NON_RECURSIVE)};
if (nonRecursive1 != symbol2.attrs().test(Attr::NON_RECURSIVE)) { // C1551
Say(symbol1, symbol2,
nonRecursive1
? "Module subprogram '%s' has NON_RECURSIVE prefix but"
" the corresponding interface body does not"_err_en_US
: "Module subprogram '%s' does not have NON_RECURSIVE prefix but "
"the corresponding interface body does"_err_en_US);
}
MaybeExpr bindName1{details1.bindName()};
MaybeExpr bindName2{details2.bindName()};
if (bindName1.has_value() != bindName2.has_value()) {
Say(symbol1, symbol2,
bindName1.has_value()
? "Module subprogram '%s' has a binding label but the corresponding"
" interface body does not"_err_en_US
: "Module subprogram '%s' does not have a binding label but the"
" corresponding interface body does"_err_en_US);
} else if (bindName1) {
std::string string1{bindName1->AsFortran()};
std::string string2{bindName2->AsFortran()};
if (string1 != string2) {
Say(symbol1, symbol2,
"Module subprogram '%s' has binding label %s but the corresponding"
" interface body has %s"_err_en_US,
string1, string2);
}
}
auto proc1{Procedure::Characterize(symbol1, context.intrinsics())};
auto proc2{Procedure::Characterize(symbol2, context.intrinsics())};
if (!proc1 || !proc2) {
return;
}
if (proc1->functionResult && proc2->functionResult &&
*proc1->functionResult != *proc2->functionResult) {
Say(symbol1, symbol2,
"Return type of function '%s' does not match return type of"
" the corresponding interface body"_err_en_US);
}
for (int i{0}; i < nargs1; ++i) {
const Symbol *arg1{args1[i]};
const Symbol *arg2{args2[i]};
if (arg1 && !arg2) {
Say(symbol1, symbol2,
"Dummy argument %2$d of '%1$s' is not an alternate return indicator"
" but the corresponding argument in the interface body is"_err_en_US,
i + 1);
} else if (!arg1 && arg2) {
Say(symbol1, symbol2,
"Dummy argument %2$d of '%1$s' is an alternate return indicator but"
" the corresponding argument in the interface body is not"_err_en_US,
i + 1);
} else if (arg1 && arg2) {
SourceName name1{arg1->name()};
SourceName name2{arg2->name()};
if (name1 != name2) {
Say(*arg1, *arg2,
"Dummy argument name '%s' does not match corresponding name '%s'"
" in interface body"_err_en_US,
name2);
} else {
CheckDummyArg(
*arg1, *arg2, proc1->dummyArguments[i], proc2->dummyArguments[i]);
}
}
}
}
void SubprogramMatchHelper::CheckDummyArg(const Symbol &symbol1,
const Symbol &symbol2, const DummyArgument &arg1,
const DummyArgument &arg2) {
std::visit(common::visitors{
[&](const DummyDataObject &obj1, const DummyDataObject &obj2) {
CheckDummyDataObject(symbol1, symbol2, obj1, obj2);
},
[&](const DummyProcedure &proc1, const DummyProcedure &proc2) {
CheckDummyProcedure(symbol1, symbol2, proc1, proc2);
},
[&](const DummyDataObject &, const auto &) {
Say(symbol1, symbol2,
"Dummy argument '%s' is a data object; the corresponding"
" argument in the interface body is not"_err_en_US);
},
[&](const DummyProcedure &, const auto &) {
Say(symbol1, symbol2,
"Dummy argument '%s' is a procedure; the corresponding"
" argument in the interface body is not"_err_en_US);
},
[&](const auto &, const auto &) {
llvm_unreachable("Dummy arguments are not data objects or"
"procedures");
},
},
arg1.u, arg2.u);
}
void SubprogramMatchHelper::CheckDummyDataObject(const Symbol &symbol1,
const Symbol &symbol2, const DummyDataObject &obj1,
const DummyDataObject &obj2) {
if (!CheckSameIntent(symbol1, symbol2, obj1.intent, obj2.intent)) {
} else if (!CheckSameAttrs(symbol1, symbol2, obj1.attrs, obj2.attrs)) {
} else if (obj1.type.type() != obj2.type.type()) {
Say(symbol1, symbol2,
"Dummy argument '%s' has type %s; the corresponding argument in the"
" interface body has type %s"_err_en_US,
obj1.type.type().AsFortran(), obj2.type.type().AsFortran());
} else if (!ShapesAreCompatible(obj1, obj2)) {
Say(symbol1, symbol2,
"The shape of dummy argument '%s' does not match the shape of the"
" corresponding argument in the interface body"_err_en_US);
}
// TODO: coshape
}
void SubprogramMatchHelper::CheckDummyProcedure(const Symbol &symbol1,
const Symbol &symbol2, const DummyProcedure &proc1,
const DummyProcedure &proc2) {
if (!CheckSameIntent(symbol1, symbol2, proc1.intent, proc2.intent)) {
} else if (!CheckSameAttrs(symbol1, symbol2, proc1.attrs, proc2.attrs)) {
} else if (proc1 != proc2) {
Say(symbol1, symbol2,
"Dummy procedure '%s' does not match the corresponding argument in"
" the interface body"_err_en_US);
}
}
bool SubprogramMatchHelper::CheckSameIntent(const Symbol &symbol1,
const Symbol &symbol2, common::Intent intent1, common::Intent intent2) {
if (intent1 == intent2) {
return true;
} else {
Say(symbol1, symbol2,
"The intent of dummy argument '%s' does not match the intent"
" of the corresponding argument in the interface body"_err_en_US);
return false;
}
}
// Report an error referring to first symbol with declaration of second symbol
template <typename... A>
void SubprogramMatchHelper::Say(const Symbol &symbol1, const Symbol &symbol2,
parser::MessageFixedText &&text, A &&... args) {
auto &message{context.Say(symbol1.name(), std::move(text), symbol1.name(),
std::forward<A>(args)...)};
evaluate::AttachDeclaration(message, symbol2);
}
template <typename ATTRS>
bool SubprogramMatchHelper::CheckSameAttrs(
const Symbol &symbol1, const Symbol &symbol2, ATTRS attrs1, ATTRS attrs2) {
if (attrs1 == attrs2) {
return true;
}
attrs1.IterateOverMembers([&](auto attr) {
if (!attrs2.test(attr)) {
Say(symbol1, symbol2,
"Dummy argument '%s' has the %s attribute; the corresponding"
" argument in the interface body does not"_err_en_US,
AsFortran(attr));
}
});
attrs2.IterateOverMembers([&](auto attr) {
if (!attrs1.test(attr)) {
Say(symbol1, symbol2,
"Dummy argument '%s' does not have the %s attribute; the"
" corresponding argument in the interface body does"_err_en_US,
AsFortran(attr));
}
});
return false;
}
bool SubprogramMatchHelper::ShapesAreCompatible(
const DummyDataObject &obj1, const DummyDataObject &obj2) {
return evaluate::characteristics::ShapesAreCompatible(
FoldShape(obj1.type.shape()), FoldShape(obj2.type.shape()));
}
evaluate::Shape SubprogramMatchHelper::FoldShape(const evaluate::Shape &shape) {
evaluate::Shape result;
for (const auto &extent : shape) {
result.emplace_back(
evaluate::Fold(context.foldingContext(), common::Clone(extent)));
}
return result;
}
void CheckDeclarations(SemanticsContext &context) {
CheckHelper{context}.Check();
}
} // namespace Fortran::semantics