Summary: A *.cpp file header in LLDB (and in LLDB) should like this: ``` //===-- TestUtilities.cpp -------------------------------------------------===// ``` However in LLDB most of our source files have arbitrary changes to this format and these changes are spreading through LLDB as folks usually just use the existing source files as templates for their new files (most notably the unnecessary editor language indicator `-*- C++ -*-` is spreading and in every review someone is pointing out that this is wrong, resulting in people pointing out that this is done in the same way in other files). This patch removes most of these inconsistencies including the editor language indicators, all the different missing/additional '-' characters, files that center the file name, missing trailing `===//` (mostly caused by clang-format breaking the line). Reviewers: aprantl, espindola, jfb, shafik, JDevlieghere Reviewed By: JDevlieghere Subscribers: dexonsmith, wuzish, emaste, sdardis, nemanjai, kbarton, MaskRay, atanasyan, arphaman, jfb, abidh, jsji, JDevlieghere, usaxena95, lldb-commits Tags: #lldb Differential Revision: https://reviews.llvm.org/D73258
600 lines
21 KiB
C++
600 lines
21 KiB
C++
//===-- MinidumpParser.cpp ------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MinidumpParser.h"
|
|
#include "NtStructures.h"
|
|
#include "RegisterContextMinidump_x86_32.h"
|
|
|
|
#include "Plugins/Process/Utility/LinuxProcMaps.h"
|
|
#include "lldb/Utility/LLDBAssert.h"
|
|
#include "lldb/Utility/Log.h"
|
|
|
|
// C includes
|
|
// C++ includes
|
|
#include <algorithm>
|
|
#include <map>
|
|
#include <vector>
|
|
#include <utility>
|
|
|
|
using namespace lldb_private;
|
|
using namespace minidump;
|
|
|
|
llvm::Expected<MinidumpParser>
|
|
MinidumpParser::Create(const lldb::DataBufferSP &data_sp) {
|
|
auto ExpectedFile = llvm::object::MinidumpFile::create(
|
|
llvm::MemoryBufferRef(toStringRef(data_sp->GetData()), "minidump"));
|
|
if (!ExpectedFile)
|
|
return ExpectedFile.takeError();
|
|
|
|
return MinidumpParser(data_sp, std::move(*ExpectedFile));
|
|
}
|
|
|
|
MinidumpParser::MinidumpParser(lldb::DataBufferSP data_sp,
|
|
std::unique_ptr<llvm::object::MinidumpFile> file)
|
|
: m_data_sp(std::move(data_sp)), m_file(std::move(file)) {}
|
|
|
|
llvm::ArrayRef<uint8_t> MinidumpParser::GetData() {
|
|
return llvm::ArrayRef<uint8_t>(m_data_sp->GetBytes(),
|
|
m_data_sp->GetByteSize());
|
|
}
|
|
|
|
llvm::ArrayRef<uint8_t> MinidumpParser::GetStream(StreamType stream_type) {
|
|
return m_file->getRawStream(stream_type)
|
|
.getValueOr(llvm::ArrayRef<uint8_t>());
|
|
}
|
|
|
|
UUID MinidumpParser::GetModuleUUID(const minidump::Module *module) {
|
|
auto cv_record =
|
|
GetData().slice(module->CvRecord.RVA, module->CvRecord.DataSize);
|
|
|
|
// Read the CV record signature
|
|
const llvm::support::ulittle32_t *signature = nullptr;
|
|
Status error = consumeObject(cv_record, signature);
|
|
if (error.Fail())
|
|
return UUID();
|
|
|
|
const CvSignature cv_signature =
|
|
static_cast<CvSignature>(static_cast<uint32_t>(*signature));
|
|
|
|
if (cv_signature == CvSignature::Pdb70) {
|
|
const CvRecordPdb70 *pdb70_uuid = nullptr;
|
|
Status error = consumeObject(cv_record, pdb70_uuid);
|
|
if (error.Fail())
|
|
return UUID();
|
|
|
|
CvRecordPdb70 swapped;
|
|
if (!GetArchitecture().GetTriple().isOSBinFormatELF()) {
|
|
// LLDB's UUID class treats the data as a sequence of bytes, but breakpad
|
|
// interprets it as a sequence of little-endian fields, which it converts
|
|
// to big-endian when converting to text. Swap the bytes to big endian so
|
|
// that the string representation comes out right.
|
|
swapped = *pdb70_uuid;
|
|
llvm::sys::swapByteOrder(swapped.Uuid.Data1);
|
|
llvm::sys::swapByteOrder(swapped.Uuid.Data2);
|
|
llvm::sys::swapByteOrder(swapped.Uuid.Data3);
|
|
llvm::sys::swapByteOrder(swapped.Age);
|
|
pdb70_uuid = &swapped;
|
|
}
|
|
if (pdb70_uuid->Age != 0)
|
|
return UUID::fromOptionalData(pdb70_uuid, sizeof(*pdb70_uuid));
|
|
return UUID::fromOptionalData(&pdb70_uuid->Uuid, sizeof(pdb70_uuid->Uuid));
|
|
} else if (cv_signature == CvSignature::ElfBuildId)
|
|
return UUID::fromOptionalData(cv_record);
|
|
|
|
return UUID();
|
|
}
|
|
|
|
llvm::ArrayRef<minidump::Thread> MinidumpParser::GetThreads() {
|
|
auto ExpectedThreads = GetMinidumpFile().getThreadList();
|
|
if (ExpectedThreads)
|
|
return *ExpectedThreads;
|
|
|
|
LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_THREAD),
|
|
ExpectedThreads.takeError(),
|
|
"Failed to read thread list: {0}");
|
|
return {};
|
|
}
|
|
|
|
llvm::ArrayRef<uint8_t>
|
|
MinidumpParser::GetThreadContext(const LocationDescriptor &location) {
|
|
if (location.RVA + location.DataSize > GetData().size())
|
|
return {};
|
|
return GetData().slice(location.RVA, location.DataSize);
|
|
}
|
|
|
|
llvm::ArrayRef<uint8_t>
|
|
MinidumpParser::GetThreadContext(const minidump::Thread &td) {
|
|
return GetThreadContext(td.Context);
|
|
}
|
|
|
|
llvm::ArrayRef<uint8_t>
|
|
MinidumpParser::GetThreadContextWow64(const minidump::Thread &td) {
|
|
// On Windows, a 32-bit process can run on a 64-bit machine under WOW64. If
|
|
// the minidump was captured with a 64-bit debugger, then the CONTEXT we just
|
|
// grabbed from the mini_dump_thread is the one for the 64-bit "native"
|
|
// process rather than the 32-bit "guest" process we care about. In this
|
|
// case, we can get the 32-bit CONTEXT from the TEB (Thread Environment
|
|
// Block) of the 64-bit process.
|
|
auto teb_mem = GetMemory(td.EnvironmentBlock, sizeof(TEB64));
|
|
if (teb_mem.empty())
|
|
return {};
|
|
|
|
const TEB64 *wow64teb;
|
|
Status error = consumeObject(teb_mem, wow64teb);
|
|
if (error.Fail())
|
|
return {};
|
|
|
|
// Slot 1 of the thread-local storage in the 64-bit TEB points to a structure
|
|
// that includes the 32-bit CONTEXT (after a ULONG). See:
|
|
// https://msdn.microsoft.com/en-us/library/ms681670.aspx
|
|
auto context =
|
|
GetMemory(wow64teb->tls_slots[1] + 4, sizeof(MinidumpContext_x86_32));
|
|
if (context.size() < sizeof(MinidumpContext_x86_32))
|
|
return {};
|
|
|
|
return context;
|
|
// NOTE: We don't currently use the TEB for anything else. If we
|
|
// need it in the future, the 32-bit TEB is located according to the address
|
|
// stored in the first slot of the 64-bit TEB (wow64teb.Reserved1[0]).
|
|
}
|
|
|
|
ArchSpec MinidumpParser::GetArchitecture() {
|
|
if (m_arch.IsValid())
|
|
return m_arch;
|
|
|
|
// Set the architecture in m_arch
|
|
llvm::Expected<const SystemInfo &> system_info = m_file->getSystemInfo();
|
|
|
|
if (!system_info) {
|
|
LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS),
|
|
system_info.takeError(),
|
|
"Failed to read SystemInfo stream: {0}");
|
|
return m_arch;
|
|
}
|
|
|
|
// TODO what to do about big endiand flavors of arm ?
|
|
// TODO set the arm subarch stuff if the minidump has info about it
|
|
|
|
llvm::Triple triple;
|
|
triple.setVendor(llvm::Triple::VendorType::UnknownVendor);
|
|
|
|
switch (system_info->ProcessorArch) {
|
|
case ProcessorArchitecture::X86:
|
|
triple.setArch(llvm::Triple::ArchType::x86);
|
|
break;
|
|
case ProcessorArchitecture::AMD64:
|
|
triple.setArch(llvm::Triple::ArchType::x86_64);
|
|
break;
|
|
case ProcessorArchitecture::ARM:
|
|
triple.setArch(llvm::Triple::ArchType::arm);
|
|
break;
|
|
case ProcessorArchitecture::ARM64:
|
|
case ProcessorArchitecture::BP_ARM64:
|
|
triple.setArch(llvm::Triple::ArchType::aarch64);
|
|
break;
|
|
default:
|
|
triple.setArch(llvm::Triple::ArchType::UnknownArch);
|
|
break;
|
|
}
|
|
|
|
// TODO add all of the OSes that Minidump/breakpad distinguishes?
|
|
switch (system_info->PlatformId) {
|
|
case OSPlatform::Win32S:
|
|
case OSPlatform::Win32Windows:
|
|
case OSPlatform::Win32NT:
|
|
case OSPlatform::Win32CE:
|
|
triple.setOS(llvm::Triple::OSType::Win32);
|
|
triple.setVendor(llvm::Triple::VendorType::PC);
|
|
break;
|
|
case OSPlatform::Linux:
|
|
triple.setOS(llvm::Triple::OSType::Linux);
|
|
break;
|
|
case OSPlatform::MacOSX:
|
|
triple.setOS(llvm::Triple::OSType::MacOSX);
|
|
triple.setVendor(llvm::Triple::Apple);
|
|
break;
|
|
case OSPlatform::IOS:
|
|
triple.setOS(llvm::Triple::OSType::IOS);
|
|
triple.setVendor(llvm::Triple::Apple);
|
|
break;
|
|
case OSPlatform::Android:
|
|
triple.setOS(llvm::Triple::OSType::Linux);
|
|
triple.setEnvironment(llvm::Triple::EnvironmentType::Android);
|
|
break;
|
|
default: {
|
|
triple.setOS(llvm::Triple::OSType::UnknownOS);
|
|
auto ExpectedCSD = m_file->getString(system_info->CSDVersionRVA);
|
|
if (!ExpectedCSD) {
|
|
LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS),
|
|
ExpectedCSD.takeError(),
|
|
"Failed to CSD Version string: {0}");
|
|
} else {
|
|
if (ExpectedCSD->find("Linux") != std::string::npos)
|
|
triple.setOS(llvm::Triple::OSType::Linux);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
m_arch.SetTriple(triple);
|
|
return m_arch;
|
|
}
|
|
|
|
const MinidumpMiscInfo *MinidumpParser::GetMiscInfo() {
|
|
llvm::ArrayRef<uint8_t> data = GetStream(StreamType::MiscInfo);
|
|
|
|
if (data.size() == 0)
|
|
return nullptr;
|
|
|
|
return MinidumpMiscInfo::Parse(data);
|
|
}
|
|
|
|
llvm::Optional<LinuxProcStatus> MinidumpParser::GetLinuxProcStatus() {
|
|
llvm::ArrayRef<uint8_t> data = GetStream(StreamType::LinuxProcStatus);
|
|
|
|
if (data.size() == 0)
|
|
return llvm::None;
|
|
|
|
return LinuxProcStatus::Parse(data);
|
|
}
|
|
|
|
llvm::Optional<lldb::pid_t> MinidumpParser::GetPid() {
|
|
const MinidumpMiscInfo *misc_info = GetMiscInfo();
|
|
if (misc_info != nullptr) {
|
|
return misc_info->GetPid();
|
|
}
|
|
|
|
llvm::Optional<LinuxProcStatus> proc_status = GetLinuxProcStatus();
|
|
if (proc_status.hasValue()) {
|
|
return proc_status->GetPid();
|
|
}
|
|
|
|
return llvm::None;
|
|
}
|
|
|
|
llvm::ArrayRef<minidump::Module> MinidumpParser::GetModuleList() {
|
|
auto ExpectedModules = GetMinidumpFile().getModuleList();
|
|
if (ExpectedModules)
|
|
return *ExpectedModules;
|
|
|
|
LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_MODULES),
|
|
ExpectedModules.takeError(),
|
|
"Failed to read module list: {0}");
|
|
return {};
|
|
}
|
|
|
|
std::vector<const minidump::Module *> MinidumpParser::GetFilteredModuleList() {
|
|
Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_MODULES);
|
|
auto ExpectedModules = GetMinidumpFile().getModuleList();
|
|
if (!ExpectedModules) {
|
|
LLDB_LOG_ERROR(log, ExpectedModules.takeError(),
|
|
"Failed to read module list: {0}");
|
|
return {};
|
|
}
|
|
|
|
// map module_name -> filtered_modules index
|
|
typedef llvm::StringMap<size_t> MapType;
|
|
MapType module_name_to_filtered_index;
|
|
|
|
std::vector<const minidump::Module *> filtered_modules;
|
|
|
|
for (const auto &module : *ExpectedModules) {
|
|
auto ExpectedName = m_file->getString(module.ModuleNameRVA);
|
|
if (!ExpectedName) {
|
|
LLDB_LOG_ERROR(log, ExpectedName.takeError(),
|
|
"Failed to get module name: {0}");
|
|
continue;
|
|
}
|
|
|
|
MapType::iterator iter;
|
|
bool inserted;
|
|
// See if we have inserted this module aready into filtered_modules. If we
|
|
// haven't insert an entry into module_name_to_filtered_index with the
|
|
// index where we will insert it if it isn't in the vector already.
|
|
std::tie(iter, inserted) = module_name_to_filtered_index.try_emplace(
|
|
*ExpectedName, filtered_modules.size());
|
|
|
|
if (inserted) {
|
|
// This module has not been seen yet, insert it into filtered_modules at
|
|
// the index that was inserted into module_name_to_filtered_index using
|
|
// "filtered_modules.size()" above.
|
|
filtered_modules.push_back(&module);
|
|
} else {
|
|
// This module has been seen. Modules are sometimes mentioned multiple
|
|
// times when they are mapped discontiguously, so find the module with
|
|
// the lowest "base_of_image" and use that as the filtered module.
|
|
auto dup_module = filtered_modules[iter->second];
|
|
if (module.BaseOfImage < dup_module->BaseOfImage)
|
|
filtered_modules[iter->second] = &module;
|
|
}
|
|
}
|
|
return filtered_modules;
|
|
}
|
|
|
|
const minidump::ExceptionStream *MinidumpParser::GetExceptionStream() {
|
|
auto ExpectedStream = GetMinidumpFile().getExceptionStream();
|
|
if (ExpectedStream)
|
|
return &*ExpectedStream;
|
|
|
|
LLDB_LOG_ERROR(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS),
|
|
ExpectedStream.takeError(),
|
|
"Failed to read minidump exception stream: {0}");
|
|
return nullptr;
|
|
}
|
|
|
|
llvm::Optional<minidump::Range>
|
|
MinidumpParser::FindMemoryRange(lldb::addr_t addr) {
|
|
llvm::ArrayRef<uint8_t> data64 = GetStream(StreamType::Memory64List);
|
|
Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_MODULES);
|
|
|
|
auto ExpectedMemory = GetMinidumpFile().getMemoryList();
|
|
if (!ExpectedMemory) {
|
|
LLDB_LOG_ERROR(log, ExpectedMemory.takeError(),
|
|
"Failed to read memory list: {0}");
|
|
} else {
|
|
for (const auto &memory_desc : *ExpectedMemory) {
|
|
const LocationDescriptor &loc_desc = memory_desc.Memory;
|
|
const lldb::addr_t range_start = memory_desc.StartOfMemoryRange;
|
|
const size_t range_size = loc_desc.DataSize;
|
|
|
|
if (loc_desc.RVA + loc_desc.DataSize > GetData().size())
|
|
return llvm::None;
|
|
|
|
if (range_start <= addr && addr < range_start + range_size) {
|
|
auto ExpectedSlice = GetMinidumpFile().getRawData(loc_desc);
|
|
if (!ExpectedSlice) {
|
|
LLDB_LOG_ERROR(log, ExpectedSlice.takeError(),
|
|
"Failed to get memory slice: {0}");
|
|
return llvm::None;
|
|
}
|
|
return minidump::Range(range_start, *ExpectedSlice);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Some Minidumps have a Memory64ListStream that captures all the heap memory
|
|
// (full-memory Minidumps). We can't exactly use the same loop as above,
|
|
// because the Minidump uses slightly different data structures to describe
|
|
// those
|
|
|
|
if (!data64.empty()) {
|
|
llvm::ArrayRef<MinidumpMemoryDescriptor64> memory64_list;
|
|
uint64_t base_rva;
|
|
std::tie(memory64_list, base_rva) =
|
|
MinidumpMemoryDescriptor64::ParseMemory64List(data64);
|
|
|
|
if (memory64_list.empty())
|
|
return llvm::None;
|
|
|
|
for (const auto &memory_desc64 : memory64_list) {
|
|
const lldb::addr_t range_start = memory_desc64.start_of_memory_range;
|
|
const size_t range_size = memory_desc64.data_size;
|
|
|
|
if (base_rva + range_size > GetData().size())
|
|
return llvm::None;
|
|
|
|
if (range_start <= addr && addr < range_start + range_size) {
|
|
return minidump::Range(range_start,
|
|
GetData().slice(base_rva, range_size));
|
|
}
|
|
base_rva += range_size;
|
|
}
|
|
}
|
|
|
|
return llvm::None;
|
|
}
|
|
|
|
llvm::ArrayRef<uint8_t> MinidumpParser::GetMemory(lldb::addr_t addr,
|
|
size_t size) {
|
|
// I don't have a sense of how frequently this is called or how many memory
|
|
// ranges a Minidump typically has, so I'm not sure if searching for the
|
|
// appropriate range linearly each time is stupid. Perhaps we should build
|
|
// an index for faster lookups.
|
|
llvm::Optional<minidump::Range> range = FindMemoryRange(addr);
|
|
if (!range)
|
|
return {};
|
|
|
|
// There's at least some overlap between the beginning of the desired range
|
|
// (addr) and the current range. Figure out where the overlap begins and how
|
|
// much overlap there is.
|
|
|
|
const size_t offset = addr - range->start;
|
|
|
|
if (addr < range->start || offset >= range->range_ref.size())
|
|
return {};
|
|
|
|
const size_t overlap = std::min(size, range->range_ref.size() - offset);
|
|
return range->range_ref.slice(offset, overlap);
|
|
}
|
|
|
|
static bool
|
|
CreateRegionsCacheFromLinuxMaps(MinidumpParser &parser,
|
|
std::vector<MemoryRegionInfo> ®ions) {
|
|
auto data = parser.GetStream(StreamType::LinuxMaps);
|
|
if (data.empty())
|
|
return false;
|
|
ParseLinuxMapRegions(llvm::toStringRef(data),
|
|
[&](const lldb_private::MemoryRegionInfo ®ion,
|
|
const lldb_private::Status &status) -> bool {
|
|
if (status.Success())
|
|
regions.push_back(region);
|
|
return true;
|
|
});
|
|
return !regions.empty();
|
|
}
|
|
|
|
static bool
|
|
CreateRegionsCacheFromMemoryInfoList(MinidumpParser &parser,
|
|
std::vector<MemoryRegionInfo> ®ions) {
|
|
Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_MODULES);
|
|
auto ExpectedInfo = parser.GetMinidumpFile().getMemoryInfoList();
|
|
if (!ExpectedInfo) {
|
|
LLDB_LOG_ERROR(log, ExpectedInfo.takeError(),
|
|
"Failed to read memory info list: {0}");
|
|
return false;
|
|
}
|
|
constexpr auto yes = MemoryRegionInfo::eYes;
|
|
constexpr auto no = MemoryRegionInfo::eNo;
|
|
for (const MemoryInfo &entry : *ExpectedInfo) {
|
|
MemoryRegionInfo region;
|
|
region.GetRange().SetRangeBase(entry.BaseAddress);
|
|
region.GetRange().SetByteSize(entry.RegionSize);
|
|
|
|
MemoryProtection prot = entry.Protect;
|
|
region.SetReadable(bool(prot & MemoryProtection::NoAccess) ? no : yes);
|
|
region.SetWritable(
|
|
bool(prot & (MemoryProtection::ReadWrite | MemoryProtection::WriteCopy |
|
|
MemoryProtection::ExecuteReadWrite |
|
|
MemoryProtection::ExeciteWriteCopy))
|
|
? yes
|
|
: no);
|
|
region.SetExecutable(
|
|
bool(prot & (MemoryProtection::Execute | MemoryProtection::ExecuteRead |
|
|
MemoryProtection::ExecuteReadWrite |
|
|
MemoryProtection::ExeciteWriteCopy))
|
|
? yes
|
|
: no);
|
|
region.SetMapped(entry.State != MemoryState::Free ? yes : no);
|
|
regions.push_back(region);
|
|
}
|
|
return !regions.empty();
|
|
}
|
|
|
|
static bool
|
|
CreateRegionsCacheFromMemoryList(MinidumpParser &parser,
|
|
std::vector<MemoryRegionInfo> ®ions) {
|
|
Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_MODULES);
|
|
auto ExpectedMemory = parser.GetMinidumpFile().getMemoryList();
|
|
if (!ExpectedMemory) {
|
|
LLDB_LOG_ERROR(log, ExpectedMemory.takeError(),
|
|
"Failed to read memory list: {0}");
|
|
return false;
|
|
}
|
|
regions.reserve(ExpectedMemory->size());
|
|
for (const MemoryDescriptor &memory_desc : *ExpectedMemory) {
|
|
if (memory_desc.Memory.DataSize == 0)
|
|
continue;
|
|
MemoryRegionInfo region;
|
|
region.GetRange().SetRangeBase(memory_desc.StartOfMemoryRange);
|
|
region.GetRange().SetByteSize(memory_desc.Memory.DataSize);
|
|
region.SetReadable(MemoryRegionInfo::eYes);
|
|
region.SetMapped(MemoryRegionInfo::eYes);
|
|
regions.push_back(region);
|
|
}
|
|
regions.shrink_to_fit();
|
|
return !regions.empty();
|
|
}
|
|
|
|
static bool
|
|
CreateRegionsCacheFromMemory64List(MinidumpParser &parser,
|
|
std::vector<MemoryRegionInfo> ®ions) {
|
|
llvm::ArrayRef<uint8_t> data =
|
|
parser.GetStream(StreamType::Memory64List);
|
|
if (data.empty())
|
|
return false;
|
|
llvm::ArrayRef<MinidumpMemoryDescriptor64> memory64_list;
|
|
uint64_t base_rva;
|
|
std::tie(memory64_list, base_rva) =
|
|
MinidumpMemoryDescriptor64::ParseMemory64List(data);
|
|
|
|
if (memory64_list.empty())
|
|
return false;
|
|
|
|
regions.reserve(memory64_list.size());
|
|
for (const auto &memory_desc : memory64_list) {
|
|
if (memory_desc.data_size == 0)
|
|
continue;
|
|
MemoryRegionInfo region;
|
|
region.GetRange().SetRangeBase(memory_desc.start_of_memory_range);
|
|
region.GetRange().SetByteSize(memory_desc.data_size);
|
|
region.SetReadable(MemoryRegionInfo::eYes);
|
|
region.SetMapped(MemoryRegionInfo::eYes);
|
|
regions.push_back(region);
|
|
}
|
|
regions.shrink_to_fit();
|
|
return !regions.empty();
|
|
}
|
|
|
|
std::pair<MemoryRegionInfos, bool> MinidumpParser::BuildMemoryRegions() {
|
|
// We create the region cache using the best source. We start with
|
|
// the linux maps since they are the most complete and have names for the
|
|
// regions. Next we try the MemoryInfoList since it has
|
|
// read/write/execute/map data, and then fall back to the MemoryList and
|
|
// Memory64List to just get a list of the memory that is mapped in this
|
|
// core file
|
|
MemoryRegionInfos result;
|
|
const auto &return_sorted = [&](bool is_complete) {
|
|
llvm::sort(result);
|
|
return std::make_pair(std::move(result), is_complete);
|
|
};
|
|
if (CreateRegionsCacheFromLinuxMaps(*this, result))
|
|
return return_sorted(true);
|
|
if (CreateRegionsCacheFromMemoryInfoList(*this, result))
|
|
return return_sorted(true);
|
|
if (CreateRegionsCacheFromMemoryList(*this, result))
|
|
return return_sorted(false);
|
|
CreateRegionsCacheFromMemory64List(*this, result);
|
|
return return_sorted(false);
|
|
}
|
|
|
|
#define ENUM_TO_CSTR(ST) \
|
|
case StreamType::ST: \
|
|
return #ST
|
|
|
|
llvm::StringRef
|
|
MinidumpParser::GetStreamTypeAsString(StreamType stream_type) {
|
|
switch (stream_type) {
|
|
ENUM_TO_CSTR(Unused);
|
|
ENUM_TO_CSTR(ThreadList);
|
|
ENUM_TO_CSTR(ModuleList);
|
|
ENUM_TO_CSTR(MemoryList);
|
|
ENUM_TO_CSTR(Exception);
|
|
ENUM_TO_CSTR(SystemInfo);
|
|
ENUM_TO_CSTR(ThreadExList);
|
|
ENUM_TO_CSTR(Memory64List);
|
|
ENUM_TO_CSTR(CommentA);
|
|
ENUM_TO_CSTR(CommentW);
|
|
ENUM_TO_CSTR(HandleData);
|
|
ENUM_TO_CSTR(FunctionTable);
|
|
ENUM_TO_CSTR(UnloadedModuleList);
|
|
ENUM_TO_CSTR(MiscInfo);
|
|
ENUM_TO_CSTR(MemoryInfoList);
|
|
ENUM_TO_CSTR(ThreadInfoList);
|
|
ENUM_TO_CSTR(HandleOperationList);
|
|
ENUM_TO_CSTR(Token);
|
|
ENUM_TO_CSTR(JavascriptData);
|
|
ENUM_TO_CSTR(SystemMemoryInfo);
|
|
ENUM_TO_CSTR(ProcessVMCounters);
|
|
ENUM_TO_CSTR(LastReserved);
|
|
ENUM_TO_CSTR(BreakpadInfo);
|
|
ENUM_TO_CSTR(AssertionInfo);
|
|
ENUM_TO_CSTR(LinuxCPUInfo);
|
|
ENUM_TO_CSTR(LinuxProcStatus);
|
|
ENUM_TO_CSTR(LinuxLSBRelease);
|
|
ENUM_TO_CSTR(LinuxCMDLine);
|
|
ENUM_TO_CSTR(LinuxEnviron);
|
|
ENUM_TO_CSTR(LinuxAuxv);
|
|
ENUM_TO_CSTR(LinuxMaps);
|
|
ENUM_TO_CSTR(LinuxDSODebug);
|
|
ENUM_TO_CSTR(LinuxProcStat);
|
|
ENUM_TO_CSTR(LinuxProcUptime);
|
|
ENUM_TO_CSTR(LinuxProcFD);
|
|
ENUM_TO_CSTR(FacebookAppCustomData);
|
|
ENUM_TO_CSTR(FacebookBuildID);
|
|
ENUM_TO_CSTR(FacebookAppVersionName);
|
|
ENUM_TO_CSTR(FacebookJavaStack);
|
|
ENUM_TO_CSTR(FacebookDalvikInfo);
|
|
ENUM_TO_CSTR(FacebookUnwindSymbols);
|
|
ENUM_TO_CSTR(FacebookDumpErrorLog);
|
|
ENUM_TO_CSTR(FacebookAppStateLog);
|
|
ENUM_TO_CSTR(FacebookAbortReason);
|
|
ENUM_TO_CSTR(FacebookThreadName);
|
|
ENUM_TO_CSTR(FacebookLogcat);
|
|
}
|
|
return "unknown stream type";
|
|
}
|