Files
clang-p2996/mlir/lib/Dialect/SCF/SCF.cpp
Rahul Joshi a3ad8f92b4 [MLIR] Add type checking capability to RegionBranchOpInterface
- Add function `verifyTypes` that Op's can call to do type checking verification
  along the control flow edges described the Op's RegionBranchOpInterface.
- We cannot rely on the verify methods on the OpInterface because the interface
  functions assume valid Ops, so they may crash if invoked on unverified Ops.
  (For example, scf.for getSuccessorRegions() calls getRegionIterArgs(), which
  dereferences getBody() block. If the scf.for is invalid with no body, this
  can lead to a segfault). `verifyTypes` can be called post op-verification to
  avoid this.

Differential Revision: https://reviews.llvm.org/D82829
2020-07-15 11:14:07 -07:00

905 lines
35 KiB
C++

//===- SCF.cpp - Structured Control Flow Operations -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/InliningUtils.h"
using namespace mlir;
using namespace mlir::scf;
//===----------------------------------------------------------------------===//
// SCFDialect Dialect Interfaces
//===----------------------------------------------------------------------===//
namespace {
struct SCFInlinerInterface : public DialectInlinerInterface {
using DialectInlinerInterface::DialectInlinerInterface;
// We don't have any special restrictions on what can be inlined into
// destination regions (e.g. while/conditional bodies). Always allow it.
bool isLegalToInline(Region *dest, Region *src,
BlockAndValueMapping &valueMapping) const final {
return true;
}
// Operations in scf dialect are always legal to inline since they are
// pure.
bool isLegalToInline(Operation *, Region *,
BlockAndValueMapping &) const final {
return true;
}
// Handle the given inlined terminator by replacing it with a new operation
// as necessary. Required when the region has only one block.
void handleTerminator(Operation *op,
ArrayRef<Value> valuesToRepl) const final {
auto retValOp = dyn_cast<YieldOp>(op);
if (!retValOp)
return;
for (auto retValue : llvm::zip(valuesToRepl, retValOp.getOperands())) {
std::get<0>(retValue).replaceAllUsesWith(std::get<1>(retValue));
}
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// SCFDialect
//===----------------------------------------------------------------------===//
SCFDialect::SCFDialect(MLIRContext *context)
: Dialect(getDialectNamespace(), context) {
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/SCF/SCFOps.cpp.inc"
>();
addInterfaces<SCFInlinerInterface>();
}
/// Default callback for IfOp builders. Inserts a yield without arguments.
void mlir::scf::buildTerminatedBody(OpBuilder &builder, Location loc) {
builder.create<scf::YieldOp>(loc);
}
//===----------------------------------------------------------------------===//
// ForOp
//===----------------------------------------------------------------------===//
void ForOp::build(OpBuilder &builder, OperationState &result, Value lb,
Value ub, Value step, ValueRange iterArgs,
BodyBuilderFn bodyBuilder) {
result.addOperands({lb, ub, step});
result.addOperands(iterArgs);
for (Value v : iterArgs)
result.addTypes(v.getType());
Region *bodyRegion = result.addRegion();
bodyRegion->push_back(new Block);
Block &bodyBlock = bodyRegion->front();
bodyBlock.addArgument(builder.getIndexType());
for (Value v : iterArgs)
bodyBlock.addArgument(v.getType());
// Create the default terminator if the builder is not provided and if the
// iteration arguments are not provided. Otherwise, leave this to the caller
// because we don't know which values to return from the loop.
if (iterArgs.empty() && !bodyBuilder) {
ForOp::ensureTerminator(*bodyRegion, builder, result.location);
} else if (bodyBuilder) {
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(&bodyBlock);
bodyBuilder(builder, result.location, bodyBlock.getArgument(0),
bodyBlock.getArguments().drop_front());
}
}
static LogicalResult verify(ForOp op) {
if (auto cst = op.step().getDefiningOp<ConstantIndexOp>())
if (cst.getValue() <= 0)
return op.emitOpError("constant step operand must be positive");
// Check that the body defines as single block argument for the induction
// variable.
auto *body = op.getBody();
if (!body->getArgument(0).getType().isIndex())
return op.emitOpError(
"expected body first argument to be an index argument for "
"the induction variable");
auto opNumResults = op.getNumResults();
if (opNumResults == 0)
return success();
// If ForOp defines values, check that the number and types of
// the defined values match ForOp initial iter operands and backedge
// basic block arguments.
if (op.getNumIterOperands() != opNumResults)
return op.emitOpError(
"mismatch in number of loop-carried values and defined values");
if (op.getNumRegionIterArgs() != opNumResults)
return op.emitOpError(
"mismatch in number of basic block args and defined values");
auto iterOperands = op.getIterOperands();
auto iterArgs = op.getRegionIterArgs();
auto opResults = op.getResults();
unsigned i = 0;
for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) {
if (std::get<0>(e).getType() != std::get<2>(e).getType())
return op.emitOpError() << "types mismatch between " << i
<< "th iter operand and defined value";
if (std::get<1>(e).getType() != std::get<2>(e).getType())
return op.emitOpError() << "types mismatch between " << i
<< "th iter region arg and defined value";
i++;
}
return RegionBranchOpInterface::verifyTypes(op);
}
static void print(OpAsmPrinter &p, ForOp op) {
bool printBlockTerminators = false;
p << op.getOperationName() << " " << op.getInductionVar() << " = "
<< op.lowerBound() << " to " << op.upperBound() << " step " << op.step();
if (op.hasIterOperands()) {
p << " iter_args(";
auto regionArgs = op.getRegionIterArgs();
auto operands = op.getIterOperands();
llvm::interleaveComma(llvm::zip(regionArgs, operands), p, [&](auto it) {
p << std::get<0>(it) << " = " << std::get<1>(it);
});
p << ")";
p << " -> (" << op.getResultTypes() << ")";
printBlockTerminators = true;
}
p.printRegion(op.region(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/printBlockTerminators);
p.printOptionalAttrDict(op.getAttrs());
}
static ParseResult parseForOp(OpAsmParser &parser, OperationState &result) {
auto &builder = parser.getBuilder();
OpAsmParser::OperandType inductionVariable, lb, ub, step;
// Parse the induction variable followed by '='.
if (parser.parseRegionArgument(inductionVariable) || parser.parseEqual())
return failure();
// Parse loop bounds.
Type indexType = builder.getIndexType();
if (parser.parseOperand(lb) ||
parser.resolveOperand(lb, indexType, result.operands) ||
parser.parseKeyword("to") || parser.parseOperand(ub) ||
parser.resolveOperand(ub, indexType, result.operands) ||
parser.parseKeyword("step") || parser.parseOperand(step) ||
parser.resolveOperand(step, indexType, result.operands))
return failure();
// Parse the optional initial iteration arguments.
SmallVector<OpAsmParser::OperandType, 4> regionArgs, operands;
SmallVector<Type, 4> argTypes;
regionArgs.push_back(inductionVariable);
if (succeeded(parser.parseOptionalKeyword("iter_args"))) {
// Parse assignment list and results type list.
if (parser.parseAssignmentList(regionArgs, operands) ||
parser.parseArrowTypeList(result.types))
return failure();
// Resolve input operands.
for (auto operand_type : llvm::zip(operands, result.types))
if (parser.resolveOperand(std::get<0>(operand_type),
std::get<1>(operand_type), result.operands))
return failure();
}
// Induction variable.
argTypes.push_back(indexType);
// Loop carried variables
argTypes.append(result.types.begin(), result.types.end());
// Parse the body region.
Region *body = result.addRegion();
if (regionArgs.size() != argTypes.size())
return parser.emitError(
parser.getNameLoc(),
"mismatch in number of loop-carried values and defined values");
if (parser.parseRegion(*body, regionArgs, argTypes))
return failure();
ForOp::ensureTerminator(*body, builder, result.location);
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
Region &ForOp::getLoopBody() { return region(); }
bool ForOp::isDefinedOutsideOfLoop(Value value) {
return !region().isAncestor(value.getParentRegion());
}
LogicalResult ForOp::moveOutOfLoop(ArrayRef<Operation *> ops) {
for (auto op : ops)
op->moveBefore(*this);
return success();
}
ForOp mlir::scf::getForInductionVarOwner(Value val) {
auto ivArg = val.dyn_cast<BlockArgument>();
if (!ivArg)
return ForOp();
assert(ivArg.getOwner() && "unlinked block argument");
auto *containingOp = ivArg.getOwner()->getParentOp();
return dyn_cast_or_null<ForOp>(containingOp);
}
/// Return operands used when entering the region at 'index'. These operands
/// correspond to the loop iterator operands, i.e., those exclusing the
/// induction variable. LoopOp only has one region, so 0 is the only valid value
/// for `index`.
OperandRange ForOp::getSuccessorEntryOperands(unsigned index) {
assert(index == 0 && "invalid region index");
// The initial operands map to the loop arguments after the induction
// variable.
return initArgs();
}
/// Given the region at `index`, or the parent operation if `index` is None,
/// return the successor regions. These are the regions that may be selected
/// during the flow of control. `operands` is a set of optional attributes that
/// correspond to a constant value for each operand, or null if that operand is
/// not a constant.
void ForOp::getSuccessorRegions(Optional<unsigned> index,
ArrayRef<Attribute> operands,
SmallVectorImpl<RegionSuccessor> &regions) {
// If the predecessor is the ForOp, branch into the body using the iterator
// arguments.
if (!index.hasValue()) {
regions.push_back(RegionSuccessor(&getLoopBody(), getRegionIterArgs()));
return;
}
// Otherwise, the loop may branch back to itself or the parent operation.
assert(index.getValue() == 0 && "expected loop region");
regions.push_back(RegionSuccessor(&getLoopBody(), getRegionIterArgs()));
regions.push_back(RegionSuccessor(getResults()));
}
ValueVector mlir::scf::buildLoopNest(
OpBuilder &builder, Location loc, ValueRange lbs, ValueRange ubs,
ValueRange steps, ValueRange iterArgs,
function_ref<ValueVector(OpBuilder &, Location, ValueRange, ValueRange)>
bodyBuilder) {
assert(lbs.size() == ubs.size() &&
"expected the same number of lower and upper bounds");
assert(lbs.size() == steps.size() &&
"expected the same number of lower bounds and steps");
// If there are no bounds, call the body-building function and return early.
if (lbs.empty()) {
ValueVector results =
bodyBuilder ? bodyBuilder(builder, loc, ValueRange(), iterArgs)
: ValueVector();
assert(results.size() == iterArgs.size() &&
"loop nest body must return as many values as loop has iteration "
"arguments");
return results;
}
// First, create the loop structure iteratively using the body-builder
// callback of `ForOp::build`. Do not create `YieldOp`s yet.
OpBuilder::InsertionGuard guard(builder);
SmallVector<scf::ForOp, 4> loops;
SmallVector<Value, 4> ivs;
loops.reserve(lbs.size());
ivs.reserve(lbs.size());
ValueRange currentIterArgs = iterArgs;
Location currentLoc = loc;
for (unsigned i = 0, e = lbs.size(); i < e; ++i) {
auto loop = builder.create<scf::ForOp>(
currentLoc, lbs[i], ubs[i], steps[i], currentIterArgs,
[&](OpBuilder &nestedBuilder, Location nestedLoc, Value iv,
ValueRange args) {
ivs.push_back(iv);
// It is safe to store ValueRange args because it points to block
// arguments of a loop operation that we also own.
currentIterArgs = args;
currentLoc = nestedLoc;
});
// Set the builder to point to the body of the newly created loop. We don't
// do this in the callback because the builder is reset when the callback
// returns.
builder.setInsertionPointToStart(loop.getBody());
loops.push_back(loop);
}
// For all loops but the innermost, yield the results of the nested loop.
for (unsigned i = 0, e = loops.size() - 1; i < e; ++i) {
builder.setInsertionPointToEnd(loops[i].getBody());
builder.create<scf::YieldOp>(loc, loops[i + 1].getResults());
}
// In the body of the innermost loop, call the body building function if any
// and yield its results.
builder.setInsertionPointToStart(loops.back().getBody());
ValueVector results = bodyBuilder
? bodyBuilder(builder, currentLoc, ivs,
loops.back().getRegionIterArgs())
: ValueVector();
assert(results.size() == iterArgs.size() &&
"loop nest body must return as many values as loop has iteration "
"arguments");
builder.setInsertionPointToEnd(loops.back().getBody());
builder.create<scf::YieldOp>(loc, results);
// Return the results of the outermost loop.
return ValueVector(loops.front().result_begin(), loops.front().result_end());
}
ValueVector mlir::scf::buildLoopNest(
OpBuilder &builder, Location loc, ValueRange lbs, ValueRange ubs,
ValueRange steps,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) {
// Delegate to the main function by wrapping the body builder.
return buildLoopNest(builder, loc, lbs, ubs, steps, llvm::None,
[&bodyBuilder](OpBuilder &nestedBuilder,
Location nestedLoc, ValueRange ivs,
ValueRange) -> ValueVector {
if (bodyBuilder)
bodyBuilder(nestedBuilder, nestedLoc, ivs);
return {};
});
}
//===----------------------------------------------------------------------===//
// IfOp
//===----------------------------------------------------------------------===//
void IfOp::build(OpBuilder &builder, OperationState &result, Value cond,
bool withElseRegion) {
build(builder, result, /*resultTypes=*/llvm::None, cond, withElseRegion);
}
void IfOp::build(OpBuilder &builder, OperationState &result,
TypeRange resultTypes, Value cond, bool withElseRegion) {
auto addTerminator = [&](OpBuilder &nested, Location loc) {
if (resultTypes.empty())
IfOp::ensureTerminator(*nested.getInsertionBlock()->getParent(), nested,
loc);
};
build(builder, result, resultTypes, cond, addTerminator,
withElseRegion ? addTerminator
: function_ref<void(OpBuilder &, Location)>());
}
void IfOp::build(OpBuilder &builder, OperationState &result,
TypeRange resultTypes, Value cond,
function_ref<void(OpBuilder &, Location)> thenBuilder,
function_ref<void(OpBuilder &, Location)> elseBuilder) {
assert(thenBuilder && "the builder callback for 'then' must be present");
result.addOperands(cond);
result.addTypes(resultTypes);
OpBuilder::InsertionGuard guard(builder);
Region *thenRegion = result.addRegion();
builder.createBlock(thenRegion);
thenBuilder(builder, result.location);
Region *elseRegion = result.addRegion();
if (!elseBuilder)
return;
builder.createBlock(elseRegion);
elseBuilder(builder, result.location);
}
void IfOp::build(OpBuilder &builder, OperationState &result, Value cond,
function_ref<void(OpBuilder &, Location)> thenBuilder,
function_ref<void(OpBuilder &, Location)> elseBuilder) {
build(builder, result, TypeRange(), cond, thenBuilder, elseBuilder);
}
static LogicalResult verify(IfOp op) {
if (op.getNumResults() != 0 && op.elseRegion().empty())
return op.emitOpError("must have an else block if defining values");
return RegionBranchOpInterface::verifyTypes(op);
}
static ParseResult parseIfOp(OpAsmParser &parser, OperationState &result) {
// Create the regions for 'then'.
result.regions.reserve(2);
Region *thenRegion = result.addRegion();
Region *elseRegion = result.addRegion();
auto &builder = parser.getBuilder();
OpAsmParser::OperandType cond;
Type i1Type = builder.getIntegerType(1);
if (parser.parseOperand(cond) ||
parser.resolveOperand(cond, i1Type, result.operands))
return failure();
// Parse optional results type list.
if (parser.parseOptionalArrowTypeList(result.types))
return failure();
// Parse the 'then' region.
if (parser.parseRegion(*thenRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
IfOp::ensureTerminator(*thenRegion, parser.getBuilder(), result.location);
// If we find an 'else' keyword then parse the 'else' region.
if (!parser.parseOptionalKeyword("else")) {
if (parser.parseRegion(*elseRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
IfOp::ensureTerminator(*elseRegion, parser.getBuilder(), result.location);
}
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
static void print(OpAsmPrinter &p, IfOp op) {
bool printBlockTerminators = false;
p << IfOp::getOperationName() << " " << op.condition();
if (!op.results().empty()) {
p << " -> (" << op.getResultTypes() << ")";
// Print yield explicitly if the op defines values.
printBlockTerminators = true;
}
p.printRegion(op.thenRegion(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/printBlockTerminators);
// Print the 'else' regions if it exists and has a block.
auto &elseRegion = op.elseRegion();
if (!elseRegion.empty()) {
p << " else";
p.printRegion(elseRegion,
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/printBlockTerminators);
}
p.printOptionalAttrDict(op.getAttrs());
}
/// Given the region at `index`, or the parent operation if `index` is None,
/// return the successor regions. These are the regions that may be selected
/// during the flow of control. `operands` is a set of optional attributes that
/// correspond to a constant value for each operand, or null if that operand is
/// not a constant.
void IfOp::getSuccessorRegions(Optional<unsigned> index,
ArrayRef<Attribute> operands,
SmallVectorImpl<RegionSuccessor> &regions) {
// The `then` and the `else` region branch back to the parent operation.
if (index.hasValue()) {
regions.push_back(RegionSuccessor(getResults()));
return;
}
// Don't consider the else region if it is empty.
Region *elseRegion = &this->elseRegion();
if (elseRegion->empty())
elseRegion = nullptr;
// Otherwise, the successor is dependent on the condition.
bool condition;
if (auto condAttr = operands.front().dyn_cast_or_null<IntegerAttr>()) {
condition = condAttr.getValue().isOneValue();
} else {
// If the condition isn't constant, both regions may be executed.
regions.push_back(RegionSuccessor(&thenRegion()));
regions.push_back(RegionSuccessor(elseRegion));
return;
}
// Add the successor regions using the condition.
regions.push_back(RegionSuccessor(condition ? &thenRegion() : elseRegion));
}
//===----------------------------------------------------------------------===//
// ParallelOp
//===----------------------------------------------------------------------===//
void ParallelOp::build(
OpBuilder &builder, OperationState &result, ValueRange lowerBounds,
ValueRange upperBounds, ValueRange steps, ValueRange initVals,
function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>
bodyBuilderFn) {
result.addOperands(lowerBounds);
result.addOperands(upperBounds);
result.addOperands(steps);
result.addOperands(initVals);
result.addAttribute(
ParallelOp::getOperandSegmentSizeAttr(),
builder.getI32VectorAttr({static_cast<int32_t>(lowerBounds.size()),
static_cast<int32_t>(upperBounds.size()),
static_cast<int32_t>(steps.size()),
static_cast<int32_t>(initVals.size())}));
result.addTypes(initVals.getTypes());
OpBuilder::InsertionGuard guard(builder);
unsigned numIVs = steps.size();
SmallVector<Type, 8> argTypes(numIVs, builder.getIndexType());
Region *bodyRegion = result.addRegion();
Block *bodyBlock = builder.createBlock(bodyRegion, {}, argTypes);
if (bodyBuilderFn) {
builder.setInsertionPointToStart(bodyBlock);
bodyBuilderFn(builder, result.location,
bodyBlock->getArguments().take_front(numIVs),
bodyBlock->getArguments().drop_front(numIVs));
}
ParallelOp::ensureTerminator(*bodyRegion, builder, result.location);
}
void ParallelOp::build(
OpBuilder &builder, OperationState &result, ValueRange lowerBounds,
ValueRange upperBounds, ValueRange steps,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn) {
// Only pass a non-null wrapper if bodyBuilderFn is non-null itself. Make sure
// we don't capture a reference to a temporary by constructing the lambda at
// function level.
auto wrappedBuilderFn = [&bodyBuilderFn](OpBuilder &nestedBuilder,
Location nestedLoc, ValueRange ivs,
ValueRange) {
bodyBuilderFn(nestedBuilder, nestedLoc, ivs);
};
function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)> wrapper;
if (bodyBuilderFn)
wrapper = wrappedBuilderFn;
build(builder, result, lowerBounds, upperBounds, steps, ValueRange(),
wrapper);
}
static LogicalResult verify(ParallelOp op) {
// Check that there is at least one value in lowerBound, upperBound and step.
// It is sufficient to test only step, because it is ensured already that the
// number of elements in lowerBound, upperBound and step are the same.
Operation::operand_range stepValues = op.step();
if (stepValues.empty())
return op.emitOpError(
"needs at least one tuple element for lowerBound, upperBound and step");
// Check whether all constant step values are positive.
for (Value stepValue : stepValues)
if (auto cst = stepValue.getDefiningOp<ConstantIndexOp>())
if (cst.getValue() <= 0)
return op.emitOpError("constant step operand must be positive");
// Check that the body defines the same number of block arguments as the
// number of tuple elements in step.
Block *body = op.getBody();
if (body->getNumArguments() != stepValues.size())
return op.emitOpError()
<< "expects the same number of induction variables: "
<< body->getNumArguments()
<< " as bound and step values: " << stepValues.size();
for (auto arg : body->getArguments())
if (!arg.getType().isIndex())
return op.emitOpError(
"expects arguments for the induction variable to be of index type");
// Check that the yield has no results
Operation *yield = body->getTerminator();
if (yield->getNumOperands() != 0)
return yield->emitOpError() << "not allowed to have operands inside '"
<< ParallelOp::getOperationName() << "'";
// Check that the number of results is the same as the number of ReduceOps.
SmallVector<ReduceOp, 4> reductions(body->getOps<ReduceOp>());
auto resultsSize = op.results().size();
auto reductionsSize = reductions.size();
auto initValsSize = op.initVals().size();
if (resultsSize != reductionsSize)
return op.emitOpError()
<< "expects number of results: " << resultsSize
<< " to be the same as number of reductions: " << reductionsSize;
if (resultsSize != initValsSize)
return op.emitOpError()
<< "expects number of results: " << resultsSize
<< " to be the same as number of initial values: " << initValsSize;
// Check that the types of the results and reductions are the same.
for (auto resultAndReduce : llvm::zip(op.results(), reductions)) {
auto resultType = std::get<0>(resultAndReduce).getType();
auto reduceOp = std::get<1>(resultAndReduce);
auto reduceType = reduceOp.operand().getType();
if (resultType != reduceType)
return reduceOp.emitOpError()
<< "expects type of reduce: " << reduceType
<< " to be the same as result type: " << resultType;
}
return success();
}
static ParseResult parseParallelOp(OpAsmParser &parser,
OperationState &result) {
auto &builder = parser.getBuilder();
// Parse an opening `(` followed by induction variables followed by `)`
SmallVector<OpAsmParser::OperandType, 4> ivs;
if (parser.parseRegionArgumentList(ivs, /*requiredOperandCount=*/-1,
OpAsmParser::Delimiter::Paren))
return failure();
// Parse loop bounds.
SmallVector<OpAsmParser::OperandType, 4> lower;
if (parser.parseEqual() ||
parser.parseOperandList(lower, ivs.size(),
OpAsmParser::Delimiter::Paren) ||
parser.resolveOperands(lower, builder.getIndexType(), result.operands))
return failure();
SmallVector<OpAsmParser::OperandType, 4> upper;
if (parser.parseKeyword("to") ||
parser.parseOperandList(upper, ivs.size(),
OpAsmParser::Delimiter::Paren) ||
parser.resolveOperands(upper, builder.getIndexType(), result.operands))
return failure();
// Parse step values.
SmallVector<OpAsmParser::OperandType, 4> steps;
if (parser.parseKeyword("step") ||
parser.parseOperandList(steps, ivs.size(),
OpAsmParser::Delimiter::Paren) ||
parser.resolveOperands(steps, builder.getIndexType(), result.operands))
return failure();
// Parse init values.
SmallVector<OpAsmParser::OperandType, 4> initVals;
if (succeeded(parser.parseOptionalKeyword("init"))) {
if (parser.parseOperandList(initVals, /*requiredOperandCount=*/-1,
OpAsmParser::Delimiter::Paren))
return failure();
}
// Parse optional results in case there is a reduce.
if (parser.parseOptionalArrowTypeList(result.types))
return failure();
// Now parse the body.
Region *body = result.addRegion();
SmallVector<Type, 4> types(ivs.size(), builder.getIndexType());
if (parser.parseRegion(*body, ivs, types))
return failure();
// Set `operand_segment_sizes` attribute.
result.addAttribute(
ParallelOp::getOperandSegmentSizeAttr(),
builder.getI32VectorAttr({static_cast<int32_t>(lower.size()),
static_cast<int32_t>(upper.size()),
static_cast<int32_t>(steps.size()),
static_cast<int32_t>(initVals.size())}));
// Parse attributes.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
if (!initVals.empty())
parser.resolveOperands(initVals, result.types, parser.getNameLoc(),
result.operands);
// Add a terminator if none was parsed.
ForOp::ensureTerminator(*body, builder, result.location);
return success();
}
static void print(OpAsmPrinter &p, ParallelOp op) {
p << op.getOperationName() << " (" << op.getBody()->getArguments() << ") = ("
<< op.lowerBound() << ") to (" << op.upperBound() << ") step (" << op.step()
<< ")";
if (!op.initVals().empty())
p << " init (" << op.initVals() << ")";
p.printOptionalArrowTypeList(op.getResultTypes());
p.printRegion(op.region(), /*printEntryBlockArgs=*/false);
p.printOptionalAttrDict(
op.getAttrs(), /*elidedAttrs=*/ParallelOp::getOperandSegmentSizeAttr());
}
Region &ParallelOp::getLoopBody() { return region(); }
bool ParallelOp::isDefinedOutsideOfLoop(Value value) {
return !region().isAncestor(value.getParentRegion());
}
LogicalResult ParallelOp::moveOutOfLoop(ArrayRef<Operation *> ops) {
for (auto op : ops)
op->moveBefore(*this);
return success();
}
ParallelOp mlir::scf::getParallelForInductionVarOwner(Value val) {
auto ivArg = val.dyn_cast<BlockArgument>();
if (!ivArg)
return ParallelOp();
assert(ivArg.getOwner() && "unlinked block argument");
auto *containingOp = ivArg.getOwner()->getParentOp();
return dyn_cast<ParallelOp>(containingOp);
}
namespace {
// Collapse loop dimensions that perform a single iteration.
struct CollapseSingleIterationLoops : public OpRewritePattern<ParallelOp> {
using OpRewritePattern<ParallelOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ParallelOp op,
PatternRewriter &rewriter) const override {
BlockAndValueMapping mapping;
// Compute new loop bounds that omit all single-iteration loop dimensions.
SmallVector<Value, 2> newLowerBounds;
SmallVector<Value, 2> newUpperBounds;
SmallVector<Value, 2> newSteps;
newLowerBounds.reserve(op.lowerBound().size());
newUpperBounds.reserve(op.upperBound().size());
newSteps.reserve(op.step().size());
for (auto dim : llvm::zip(op.lowerBound(), op.upperBound(), op.step(),
op.getInductionVars())) {
Value lowerBound, upperBound, step, iv;
std::tie(lowerBound, upperBound, step, iv) = dim;
// Collect the statically known loop bounds.
auto lowerBoundConstant =
dyn_cast_or_null<ConstantIndexOp>(lowerBound.getDefiningOp());
auto upperBoundConstant =
dyn_cast_or_null<ConstantIndexOp>(upperBound.getDefiningOp());
auto stepConstant =
dyn_cast_or_null<ConstantIndexOp>(step.getDefiningOp());
// Replace the loop induction variable by the lower bound if the loop
// performs a single iteration. Otherwise, copy the loop bounds.
if (lowerBoundConstant && upperBoundConstant && stepConstant &&
(upperBoundConstant.getValue() - lowerBoundConstant.getValue()) > 0 &&
(upperBoundConstant.getValue() - lowerBoundConstant.getValue()) <=
stepConstant.getValue()) {
mapping.map(iv, lowerBound);
} else {
newLowerBounds.push_back(lowerBound);
newUpperBounds.push_back(upperBound);
newSteps.push_back(step);
}
}
// Exit if all or none of the loop dimensions perform a single iteration.
if (newLowerBounds.size() == 0 ||
newLowerBounds.size() == op.lowerBound().size())
return failure();
// Replace the parallel loop by lower-dimensional parallel loop.
auto newOp =
rewriter.create<ParallelOp>(op.getLoc(), newLowerBounds, newUpperBounds,
newSteps, op.initVals(), nullptr);
// Clone the loop body and remap the block arguments of the collapsed loops
// (inlining does not support a cancellable block argument mapping).
rewriter.cloneRegionBefore(op.region(), newOp.region(),
newOp.region().begin(), mapping);
rewriter.replaceOp(op, newOp.getResults());
return success();
}
};
} // namespace
void ParallelOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<CollapseSingleIterationLoops>(context);
}
//===----------------------------------------------------------------------===//
// ReduceOp
//===----------------------------------------------------------------------===//
void ReduceOp::build(
OpBuilder &builder, OperationState &result, Value operand,
function_ref<void(OpBuilder &, Location, Value, Value)> bodyBuilderFn) {
auto type = operand.getType();
result.addOperands(operand);
OpBuilder::InsertionGuard guard(builder);
Region *bodyRegion = result.addRegion();
Block *body = builder.createBlock(bodyRegion, {}, ArrayRef<Type>{type, type});
if (bodyBuilderFn)
bodyBuilderFn(builder, result.location, body->getArgument(0),
body->getArgument(1));
}
static LogicalResult verify(ReduceOp op) {
// The region of a ReduceOp has two arguments of the same type as its operand.
auto type = op.operand().getType();
Block &block = op.reductionOperator().front();
if (block.empty())
return op.emitOpError("the block inside reduce should not be empty");
if (block.getNumArguments() != 2 ||
llvm::any_of(block.getArguments(), [&](const BlockArgument &arg) {
return arg.getType() != type;
}))
return op.emitOpError()
<< "expects two arguments to reduce block of type " << type;
// Check that the block is terminated by a ReduceReturnOp.
if (!isa<ReduceReturnOp>(block.getTerminator()))
return op.emitOpError("the block inside reduce should be terminated with a "
"'scf.reduce.return' op");
return success();
}
static ParseResult parseReduceOp(OpAsmParser &parser, OperationState &result) {
// Parse an opening `(` followed by the reduced value followed by `)`
OpAsmParser::OperandType operand;
if (parser.parseLParen() || parser.parseOperand(operand) ||
parser.parseRParen())
return failure();
Type resultType;
// Parse the type of the operand (and also what reduce computes on).
if (parser.parseColonType(resultType) ||
parser.resolveOperand(operand, resultType, result.operands))
return failure();
// Now parse the body.
Region *body = result.addRegion();
if (parser.parseRegion(*body, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
return success();
}
static void print(OpAsmPrinter &p, ReduceOp op) {
p << op.getOperationName() << "(" << op.operand() << ") ";
p << " : " << op.operand().getType();
p.printRegion(op.reductionOperator());
}
//===----------------------------------------------------------------------===//
// ReduceReturnOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(ReduceReturnOp op) {
// The type of the return value should be the same type as the type of the
// operand of the enclosing ReduceOp.
auto reduceOp = cast<ReduceOp>(op.getParentOp());
Type reduceType = reduceOp.operand().getType();
if (reduceType != op.result().getType())
return op.emitOpError() << "needs to have type " << reduceType
<< " (the type of the enclosing ReduceOp)";
return success();
}
//===----------------------------------------------------------------------===//
// YieldOp
//===----------------------------------------------------------------------===//
static ParseResult parseYieldOp(OpAsmParser &parser, OperationState &result) {
SmallVector<OpAsmParser::OperandType, 4> operands;
SmallVector<Type, 4> types;
llvm::SMLoc loc = parser.getCurrentLocation();
// Parse variadic operands list, their types, and resolve operands to SSA
// values.
if (parser.parseOperandList(operands) ||
parser.parseOptionalColonTypeList(types) ||
parser.resolveOperands(operands, types, loc, result.operands))
return failure();
return success();
}
static void print(OpAsmPrinter &p, YieldOp op) {
p << op.getOperationName();
if (op.getNumOperands() != 0)
p << ' ' << op.getOperands() << " : " << op.getOperandTypes();
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "mlir/Dialect/SCF/SCFOps.cpp.inc"