Files
clang-p2996/mlir/test/Transforms/buffer-placement.mlir
Julian Gross 91c320e9d8 [mlir] Add check for ViewLikeOpInterface that creates additional aliases.
ViewLikeOpInterfaces introduce new aliases that need to be added to the alias
list. This is necessary to place deallocs in the right positions.

Differential Revision: https://reviews.llvm.org/D83044
2020-07-03 16:38:21 +02:00

936 lines
30 KiB
MLIR

// RUN: mlir-opt -buffer-placement -split-input-file %s | FileCheck %s
// This file checks the behaviour of BufferPlacement pass for moving Alloc and
// Dealloc operations and inserting the missing the DeallocOps in their correct
// positions.
// Test Case:
// bb0
// / \
// bb1 bb2 <- Initial position of AllocOp
// \ /
// bb3
// BufferPlacement Expected Behaviour: It should move the existing AllocOp to
// the entry block, and insert a DeallocOp at the exit block after CopyOp since
// %1 is an alias for %0 and %arg1.
#map0 = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func @condBranch
func @condBranch(%arg0: i1, %arg1: memref<2xf32>, %arg2: memref<2xf32>) {
cond_br %arg0, ^bb1, ^bb2
^bb1:
br ^bb3(%arg1 : memref<2xf32>)
^bb2:
%0 = alloc() : memref<2xf32>
linalg.generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0],
iterator_types = ["parallel"]} %arg1, %0 {
^bb0(%gen1_arg0: f32, %gen1_arg1: f32):
%tmp1 = exp %gen1_arg0 : f32
linalg.yield %tmp1 : f32
}: memref<2xf32>, memref<2xf32>
br ^bb3(%0 : memref<2xf32>)
^bb3(%1: memref<2xf32>):
"linalg.copy"(%1, %arg2) : (memref<2xf32>, memref<2xf32>) -> ()
return
}
// CHECK-NEXT: %[[ALLOC:.*]] = alloc()
// CHECK-NEXT: cond_br
// CHECK: linalg.copy
// CHECK-NEXT: dealloc %[[ALLOC]]
// CHECK-NEXT: return
// -----
// Test Case:
// bb0
// / \
// bb1 bb2 <- Initial position of AllocOp
// \ /
// bb3
// BufferPlacement Expected Behaviour: It should not move the existing AllocOp
// to any other block since the alloc has a dynamic dependency to block argument
// %0 in bb2. Since the dynamic type is passed to bb3 via the block argument %2,
// it is currently required to allocate a temporary buffer for %2 that gets
// copies of %arg0 and %1 with their appropriate shape dimensions. The copy
// buffer deallocation will be applied to %2 in block bb3.
#map0 = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func @condBranchDynamicType
func @condBranchDynamicType(
%arg0: i1,
%arg1: memref<?xf32>,
%arg2: memref<?xf32>,
%arg3: index) {
cond_br %arg0, ^bb1, ^bb2(%arg3: index)
^bb1:
br ^bb3(%arg1 : memref<?xf32>)
^bb2(%0: index):
%1 = alloc(%0) : memref<?xf32>
linalg.generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0],
iterator_types = ["parallel"]} %arg1, %1 {
^bb0(%gen1_arg0: f32, %gen1_arg1: f32):
%tmp1 = exp %gen1_arg0 : f32
linalg.yield %tmp1 : f32
}: memref<?xf32>, memref<?xf32>
br ^bb3(%1 : memref<?xf32>)
^bb3(%2: memref<?xf32>):
"linalg.copy"(%2, %arg2) : (memref<?xf32>, memref<?xf32>) -> ()
return
}
// CHECK-NEXT: cond_br
// CHECK: %[[DIM0:.*]] = dim
// CHECK-NEXT: %[[ALLOC0:.*]] = alloc(%[[DIM0]])
// CHECK-NEXT: linalg.copy(%{{.*}}, %[[ALLOC0]])
// CHECK: ^bb2(%[[IDX:.*]]:{{.*}})
// CHECK-NEXT: %[[ALLOC1:.*]] = alloc(%[[IDX]])
// CHECK-NEXT: linalg.generic
// CHECK: %[[DIM1:.*]] = dim %[[ALLOC1]]
// CHECK-NEXT: %[[ALLOC2:.*]] = alloc(%[[DIM1]])
// CHECK-NEXT: linalg.copy(%[[ALLOC1]], %[[ALLOC2]])
// CHECK-NEXT: dealloc %[[ALLOC1]]
// CHECK-NEXT: br ^bb3
// CHECK-NEXT: ^bb3(%[[ALLOC3:.*]]:{{.*}})
// CHECK: linalg.copy(%[[ALLOC3]],
// CHECK-NEXT: dealloc %[[ALLOC3]]
// CHECK-NEXT: return
// -----
// Test Case:
// bb0
// / \
// bb1 bb2 <- Initial position of AllocOp
// | / \
// | bb3 bb4
// | \ /
// \ bb5
// \ /
// bb6
// |
// bb7
// BufferPlacement Expected Behaviour: It should not move the existing AllocOp
// to any other block since the alloc has a dynamic dependency to block argument
// %0 in bb2. Since the dynamic type is passed to bb5 via the block argument %2
// and to bb6 via block argument %3, it is currently required to allocate
// temporary buffers for %2 and %3 that gets copies of %1 and %arg0 1 with their
// appropriate shape dimensions. The copy buffer deallocations will be applied
// to %2 in block bb5 and to %3 in block bb6. Furthermore, there should be no
// copy inserted for %4.
#map0 = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func @condBranchDynamicType
func @condBranchDynamicTypeNested(
%arg0: i1,
%arg1: memref<?xf32>,
%arg2: memref<?xf32>,
%arg3: index) {
cond_br %arg0, ^bb1, ^bb2(%arg3: index)
^bb1:
br ^bb6(%arg1 : memref<?xf32>)
^bb2(%0: index):
%1 = alloc(%0) : memref<?xf32>
linalg.generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0],
iterator_types = ["parallel"]} %arg1, %1 {
^bb0(%gen1_arg0: f32, %gen1_arg1: f32):
%tmp1 = exp %gen1_arg0 : f32
linalg.yield %tmp1 : f32
}: memref<?xf32>, memref<?xf32>
cond_br %arg0, ^bb3, ^bb4
^bb3:
br ^bb5(%1 : memref<?xf32>)
^bb4:
br ^bb5(%1 : memref<?xf32>)
^bb5(%2: memref<?xf32>):
br ^bb6(%2 : memref<?xf32>)
^bb6(%3: memref<?xf32>):
br ^bb7(%3 : memref<?xf32>)
^bb7(%4: memref<?xf32>):
"linalg.copy"(%4, %arg2) : (memref<?xf32>, memref<?xf32>) -> ()
return
}
// CHECK-NEXT: cond_br
// CHECK: ^bb1
// CHECK: %[[DIM0:.*]] = dim
// CHECK-NEXT: %[[ALLOC0:.*]] = alloc(%[[DIM0]])
// CHECK-NEXT: linalg.copy(%{{.*}}, %[[ALLOC0]])
// CHECK: ^bb2(%[[IDX:.*]]:{{.*}})
// CHECK-NEXT: %[[ALLOC1:.*]] = alloc(%[[IDX]])
// CHECK-NEXT: linalg.generic
// CHECK: cond_br
// CHECK: ^bb3:
// CHECK-NEXT: br ^bb5(%[[ALLOC1]]{{.*}})
// CHECK: ^bb4:
// CHECK-NEXT: br ^bb5(%[[ALLOC1]]{{.*}})
// CHECK-NEXT: ^bb5(%[[ALLOC2:.*]]:{{.*}})
// CHECK: %[[DIM2:.*]] = dim %[[ALLOC2]]
// CHECK-NEXT: %[[ALLOC3:.*]] = alloc(%[[DIM2]])
// CHECK-NEXT: linalg.copy(%[[ALLOC2]], %[[ALLOC3]])
// CHECK-NEXT: dealloc %[[ALLOC1]]
// CHECK-NEXT: br ^bb6(%[[ALLOC3]]{{.*}})
// CHECK-NEXT: ^bb6(%[[ALLOC4:.*]]:{{.*}})
// CHECK-NEXT: br ^bb7(%[[ALLOC4]]{{.*}})
// CHECK-NEXT: ^bb7(%[[ALLOC5:.*]]:{{.*}})
// CHECK: linalg.copy(%[[ALLOC5]],
// CHECK-NEXT: dealloc %[[ALLOC4]]
// CHECK-NEXT: return
// -----
// Test Case: Existing AllocOp with no users.
// BufferPlacement Expected Behaviour: It should insert a DeallocOp right before
// ReturnOp.
// CHECK-LABEL: func @emptyUsesValue
func @emptyUsesValue(%arg0: memref<4xf32>) {
%0 = alloc() : memref<4xf32>
return
}
// CHECK-NEXT: %[[ALLOC:.*]] = alloc()
// CHECK-NEXT: dealloc %[[ALLOC]]
// CHECK-NEXT: return
// -----
// Test Case:
// bb0
// / \
// | bb1 <- Initial position of AllocOp
// \ /
// bb2
// BufferPlacement Expected Behaviour: It should move the existing AllocOp to
// the entry block and insert a DeallocOp at the exit block after CopyOp since
// %1 is an alias for %0 and %arg1.
#map0 = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func @criticalEdge
func @criticalEdge(%arg0: i1, %arg1: memref<2xf32>, %arg2: memref<2xf32>) {
cond_br %arg0, ^bb1, ^bb2(%arg1 : memref<2xf32>)
^bb1:
%0 = alloc() : memref<2xf32>
linalg.generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0],
iterator_types = ["parallel"]} %arg1, %0 {
^bb0(%gen1_arg0: f32, %gen1_arg1: f32):
%tmp1 = exp %gen1_arg0 : f32
linalg.yield %tmp1 : f32
}: memref<2xf32>, memref<2xf32>
br ^bb2(%0 : memref<2xf32>)
^bb2(%1: memref<2xf32>):
"linalg.copy"(%1, %arg2) : (memref<2xf32>, memref<2xf32>) -> ()
return
}
// CHECK-NEXT: %[[ALLOC:.*]] = alloc()
// CHECK-NEXT: cond_br
// CHECK: linalg.copy
// CHECK-NEXT: dealloc %[[ALLOC]]
// CHECK-NEXT: return
// -----
// Test Case:
// bb0 <- Initial position of AllocOp
// / \
// | bb1
// \ /
// bb2
// BufferPlacement Expected Behaviour: It shouldn't move the alloc position. It
// only inserts a DeallocOp at the exit block after CopyOp since %1 is an alias
// for %0 and %arg1.
#map0 = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func @invCriticalEdge
func @invCriticalEdge(%arg0: i1, %arg1: memref<2xf32>, %arg2: memref<2xf32>) {
%0 = alloc() : memref<2xf32>
linalg.generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0],
iterator_types = ["parallel"]} %arg1, %0 {
^bb0(%gen1_arg0: f32, %gen1_arg1: f32):
%tmp1 = exp %gen1_arg0 : f32
linalg.yield %tmp1 : f32
}: memref<2xf32>, memref<2xf32>
cond_br %arg0, ^bb1, ^bb2(%arg1 : memref<2xf32>)
^bb1:
br ^bb2(%0 : memref<2xf32>)
^bb2(%1: memref<2xf32>):
"linalg.copy"(%1, %arg2) : (memref<2xf32>, memref<2xf32>) -> ()
return
}
// CHECK: dealloc
// CHECK-NEXT: return
// -----
// Test Case:
// bb0 <- Initial position of the first AllocOp
// / \
// bb1 bb2
// \ /
// bb3 <- Initial position of the second AllocOp
// BufferPlacement Expected Behaviour: It shouldn't move the AllocOps. It only
// inserts two missing DeallocOps in the exit block. %5 is an alias for %0.
// Therefore, the DeallocOp for %0 should occur after the last GenericOp. The
// Dealloc for %7 should happen after the CopyOp.
#map0 = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func @ifElse
func @ifElse(%arg0: i1, %arg1: memref<2xf32>, %arg2: memref<2xf32>) {
%0 = alloc() : memref<2xf32>
linalg.generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0],
iterator_types = ["parallel"]} %arg1, %0 {
^bb0(%gen1_arg0: f32, %gen1_arg1: f32):
%tmp1 = exp %gen1_arg0 : f32
linalg.yield %tmp1 : f32
}: memref<2xf32>, memref<2xf32>
cond_br %arg0,
^bb1(%arg1, %0 : memref<2xf32>, memref<2xf32>),
^bb2(%0, %arg1 : memref<2xf32>, memref<2xf32>)
^bb1(%1: memref<2xf32>, %2: memref<2xf32>):
br ^bb3(%1, %2 : memref<2xf32>, memref<2xf32>)
^bb2(%3: memref<2xf32>, %4: memref<2xf32>):
br ^bb3(%3, %4 : memref<2xf32>, memref<2xf32>)
^bb3(%5: memref<2xf32>, %6: memref<2xf32>):
%7 = alloc() : memref<2xf32>
linalg.generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0],
iterator_types = ["parallel"]} %5, %7 {
^bb0(%gen2_arg0: f32, %gen2_arg1: f32):
%tmp2 = exp %gen2_arg0 : f32
linalg.yield %tmp2 : f32
}: memref<2xf32>, memref<2xf32>
"linalg.copy"(%7, %arg2) : (memref<2xf32>, memref<2xf32>) -> ()
return
}
// CHECK-NEXT: %[[FIRST_ALLOC:.*]] = alloc()
// CHECK-NEXT: linalg.generic
// CHECK: %[[SECOND_ALLOC:.*]] = alloc()
// CHECK-NEXT: linalg.generic
// CHECK: dealloc %[[FIRST_ALLOC]]
// CHECK: linalg.copy
// CHECK-NEXT: dealloc %[[SECOND_ALLOC]]
// CHECK-NEXT: return
// -----
// Test Case: No users for buffer in if-else CFG
// bb0 <- Initial position of AllocOp
// / \
// bb1 bb2
// \ /
// bb3
// BufferPlacement Expected Behaviour: It shouldn't move the AllocOp. It only
// inserts a missing DeallocOp in the exit block since %5 or %6 are the latest
// aliases of %0.
#map0 = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func @ifElseNoUsers
func @ifElseNoUsers(%arg0: i1, %arg1: memref<2xf32>, %arg2: memref<2xf32>) {
%0 = alloc() : memref<2xf32>
linalg.generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0],
iterator_types = ["parallel"]} %arg1, %0 {
^bb0(%gen1_arg0: f32, %gen1_arg1: f32):
%tmp1 = exp %gen1_arg0 : f32
linalg.yield %tmp1 : f32
}: memref<2xf32>, memref<2xf32>
cond_br %arg0,
^bb1(%arg1, %0 : memref<2xf32>, memref<2xf32>),
^bb2(%0, %arg1 : memref<2xf32>, memref<2xf32>)
^bb1(%1: memref<2xf32>, %2: memref<2xf32>):
br ^bb3(%1, %2 : memref<2xf32>, memref<2xf32>)
^bb2(%3: memref<2xf32>, %4: memref<2xf32>):
br ^bb3(%3, %4 : memref<2xf32>, memref<2xf32>)
^bb3(%5: memref<2xf32>, %6: memref<2xf32>):
"linalg.copy"(%arg1, %arg2) : (memref<2xf32>, memref<2xf32>) -> ()
return
}
// CHECK-NEXT: %[[FIRST_ALLOC:.*]] = alloc()
// CHECK: dealloc %[[FIRST_ALLOC]]
// CHECK-NEXT: return
// -----
// Test Case:
// bb0 <- Initial position of the first AllocOp
// / \
// bb1 bb2
// | / \
// | bb3 bb4
// \ \ /
// \ /
// bb5 <- Initial position of the second AllocOp
// BufferPlacement Expected Behaviour: AllocOps shouldn't be moved.
// Two missing DeallocOps should be inserted in the exit block.
#map0 = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func @ifElseNested
func @ifElseNested(%arg0: i1, %arg1: memref<2xf32>, %arg2: memref<2xf32>) {
%0 = alloc() : memref<2xf32>
linalg.generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0],
iterator_types = ["parallel"]} %arg1, %0 {
^bb0(%gen1_arg0: f32, %gen1_arg1: f32):
%tmp1 = exp %gen1_arg0 : f32
linalg.yield %tmp1 : f32
}: memref<2xf32>, memref<2xf32>
cond_br %arg0,
^bb1(%arg1, %0 : memref<2xf32>, memref<2xf32>),
^bb2(%0, %arg1 : memref<2xf32>, memref<2xf32>)
^bb1(%1: memref<2xf32>, %2: memref<2xf32>):
br ^bb5(%1, %2 : memref<2xf32>, memref<2xf32>)
^bb2(%3: memref<2xf32>, %4: memref<2xf32>):
cond_br %arg0, ^bb3(%3 : memref<2xf32>), ^bb4(%4 : memref<2xf32>)
^bb3(%5: memref<2xf32>):
br ^bb5(%5, %3 : memref<2xf32>, memref<2xf32>)
^bb4(%6: memref<2xf32>):
br ^bb5(%3, %6 : memref<2xf32>, memref<2xf32>)
^bb5(%7: memref<2xf32>, %8: memref<2xf32>):
%9 = alloc() : memref<2xf32>
linalg.generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0],
iterator_types = ["parallel"]} %7, %9 {
^bb0(%gen2_arg0: f32, %gen2_arg1: f32):
%tmp2 = exp %gen2_arg0 : f32
linalg.yield %tmp2 : f32
}: memref<2xf32>, memref<2xf32>
"linalg.copy"(%9, %arg2) : (memref<2xf32>, memref<2xf32>) -> ()
return
}
// CHECK-NEXT: %[[FIRST_ALLOC:.*]] = alloc()
// CHECK-NEXT: linalg.generic
// CHECK: %[[SECOND_ALLOC:.*]] = alloc()
// CHECK-NEXT: linalg.generic
// CHECK: dealloc %[[FIRST_ALLOC]]
// CHECK: linalg.copy
// CHECK-NEXT: dealloc %[[SECOND_ALLOC]]
// CHECK-NEXT: return
// -----
// Test Case: Dead operations in a single block.
// BufferPlacement Expected Behaviour: It shouldn't move the AllocOps. It only
// inserts the two missing DeallocOps after the last GenericOp.
#map0 = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func @redundantOperations
func @redundantOperations(%arg0: memref<2xf32>) {
%0 = alloc() : memref<2xf32>
linalg.generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0],
iterator_types = ["parallel"]} %arg0, %0 {
^bb0(%gen1_arg0: f32, %gen1_arg1: f32):
%tmp1 = exp %gen1_arg0 : f32
linalg.yield %tmp1 : f32
}: memref<2xf32>, memref<2xf32>
%1 = alloc() : memref<2xf32>
linalg.generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0],
iterator_types = ["parallel"]} %0, %1 {
^bb0(%gen2_arg0: f32, %gen2_arg1: f32):
%tmp2 = exp %gen2_arg0 : f32
linalg.yield %tmp2 : f32
}: memref<2xf32>, memref<2xf32>
return
}
// CHECK: (%[[ARG0:.*]]: {{.*}})
// CHECK-NEXT: %[[FIRST_ALLOC:.*]] = alloc()
// CHECK-NEXT: linalg.generic {{.*}} %[[ARG0]], %[[FIRST_ALLOC]]
// CHECK: %[[SECOND_ALLOC:.*]] = alloc()
// CHECK-NEXT: linalg.generic {{.*}} %[[FIRST_ALLOC]], %[[SECOND_ALLOC]]
// CHECK: dealloc
// CHECK-NEXT: dealloc
// CHECK-NEXT: return
// -----
// Test Case:
// bb0
// / \
// Initial pos of the 1st AllocOp -> bb1 bb2 <- Initial pos of the 2nd AllocOp
// \ /
// bb3
// BufferPlacement Expected Behaviour: Both AllocOps should be moved to the
// entry block. Both missing DeallocOps should be moved to the exit block after
// CopyOp since %arg2 is an alias for %0 and %1.
#map0 = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func @moving_alloc_and_inserting_missing_dealloc
func @moving_alloc_and_inserting_missing_dealloc(
%cond: i1,
%arg0: memref<2xf32>,
%arg1: memref<2xf32>) {
cond_br %cond, ^bb1, ^bb2
^bb1:
%0 = alloc() : memref<2xf32>
linalg.generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0],
iterator_types = ["parallel"]} %arg0, %0 {
^bb0(%gen1_arg0: f32, %gen1_arg1: f32):
%tmp1 = exp %gen1_arg0 : f32
linalg.yield %tmp1 : f32
}: memref<2xf32>, memref<2xf32>
br ^exit(%0 : memref<2xf32>)
^bb2:
%1 = alloc() : memref<2xf32>
linalg.generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0],
iterator_types = ["parallel"]} %arg0, %1 {
^bb0(%gen2_arg0: f32, %gen2_arg1: f32):
%tmp2 = exp %gen2_arg0 : f32
linalg.yield %tmp2 : f32
}: memref<2xf32>, memref<2xf32>
br ^exit(%1 : memref<2xf32>)
^exit(%arg2: memref<2xf32>):
"linalg.copy"(%arg2, %arg1) : (memref<2xf32>, memref<2xf32>) -> ()
return
}
// CHECK-NEXT: %{{.*}} = alloc()
// CHECK-NEXT: %{{.*}} = alloc()
// CHECK: linalg.copy
// CHECK-NEXT: dealloc
// CHECK-NEXT: dealloc
// CHECK-NEXT: return
// -----
// Test Case: Invalid position of the DeallocOp. There is a user after
// deallocation.
// bb0
// / \
// bb1 bb2 <- Initial position of AllocOp
// \ /
// bb3
// BufferPlacement Expected Behaviour: It should move the AllocOp to the entry
// block. The existing DeallocOp should be moved to exit block.
#map0 = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func @moving_invalid_dealloc_op_complex
func @moving_invalid_dealloc_op_complex(
%cond: i1,
%arg0: memref<2xf32>,
%arg1: memref<2xf32>) {
cond_br %cond, ^bb1, ^bb2
^bb1:
br ^exit(%arg0 : memref<2xf32>)
^bb2:
%1 = alloc() : memref<2xf32>
linalg.generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0],
iterator_types = ["parallel"]} %arg0, %1 {
^bb0(%gen1_arg0: f32, %gen1_arg1: f32):
%tmp1 = exp %gen1_arg0 : f32
linalg.yield %tmp1 : f32
}: memref<2xf32>, memref<2xf32>
dealloc %1 : memref<2xf32>
br ^exit(%1 : memref<2xf32>)
^exit(%arg2: memref<2xf32>):
"linalg.copy"(%arg2, %arg1) : (memref<2xf32>, memref<2xf32>) -> ()
return
}
// CHECK-NEXT: %{{.*}} = alloc()
// CHECK: linalg.copy
// CHECK-NEXT: dealloc
// CHECK-NEXT: return
// -----
// Test Case: Iserting missing DeallocOp in a single block.
#map0 = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func @inserting_missing_dealloc_simple
func @inserting_missing_dealloc_simple(
%arg0 : memref<2xf32>,
%arg1: memref<2xf32>) {
%0 = alloc() : memref<2xf32>
linalg.generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0],
iterator_types = ["parallel"]} %arg0, %0 {
^bb0(%gen1_arg0: f32, %gen1_arg1: f32):
%tmp1 = exp %gen1_arg0 : f32
linalg.yield %tmp1 : f32
}: memref<2xf32>, memref<2xf32>
"linalg.copy"(%0, %arg1) : (memref<2xf32>, memref<2xf32>) -> ()
return
}
// CHECK: linalg.copy
// CHECK-NEXT: dealloc
// -----
// Test Case: Moving invalid DeallocOp (there is a user after deallocation) in a
// single block.
#map0 = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func @moving_invalid_dealloc_op
func @moving_invalid_dealloc_op(%arg0 : memref<2xf32>, %arg1: memref<2xf32>) {
%0 = alloc() : memref<2xf32>
linalg.generic {
args_in = 1 : i64,
args_out = 1 : i64,
indexing_maps = [#map0, #map0],
iterator_types = ["parallel"]} %arg0, %0 {
^bb0(%gen1_arg0: f32, %gen1_arg1: f32):
%tmp1 = exp %gen1_arg0 : f32
linalg.yield %tmp1 : f32
}: memref<2xf32>, memref<2xf32>
dealloc %0 : memref<2xf32>
"linalg.copy"(%0, %arg1) : (memref<2xf32>, memref<2xf32>) -> ()
return
}
// CHECK: linalg.copy
// CHECK-NEXT: dealloc
// -----
// Test Case: Nested regions - This test defines a GenericOp inside the region of
// another GenericOp.
// BufferPlacement Expected Behaviour: The AllocOp of inner GenericOp should remain
// inside the region of outer GenericOp and it should insert the missing DeallocOp
// in the same region. The AllocOp of the outer GenericOp should be moved to the
// entry block and its missing DeallocOp should be inserted after Linalg.Copy.
#map0 = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func @nested_regions_and_cond_branch
func @nested_regions_and_cond_branch(%arg0: i1, %arg1: memref<2xf32>, %arg2: memref<2xf32>) {
cond_br %arg0, ^bb1, ^bb2
^bb1:
br ^bb3(%arg1 : memref<2xf32>)
^bb2:
%0 = alloc() : memref<2xf32>
linalg.generic {args_in = 1 : i64, args_out = 1 : i64, indexing_maps = [#map0, #map0], iterator_types = ["parallel"]} %arg1, %0 {
^bb0(%gen1_arg0: f32, %gen1_arg1: f32):
%1 = alloc() : memref<2xf32>
linalg.generic {args_in = 1 : i64, args_out = 1 : i64, indexing_maps = [#map0, #map0], iterator_types = ["parallel"]} %arg1, %1 {
^bb0(%gen2_arg0: f32, %gen2_arg1: f32):
%tmp2 = exp %gen2_arg0 : f32
linalg.yield %tmp2 : f32
}: memref<2xf32>, memref<2xf32>
%tmp1 = exp %gen1_arg0 : f32
linalg.yield %tmp1 : f32
}: memref<2xf32>, memref<2xf32>
br ^bb3(%0 : memref<2xf32>)
^bb3(%1: memref<2xf32>):
"linalg.copy"(%1, %arg2) : (memref<2xf32>, memref<2xf32>) -> ()
return
}
// CHECK: (%[[cond:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %{{.*}}: {{.*}})
// CHECK-NEXT: %[[GENERIC1_ALLOC:.*]] = alloc()
// CHECK-NEXT: cond_br %[[cond]], ^[[BB1:.*]], ^[[BB2:.*]]
// CHECK: ^[[BB2]]:
// CHECK-NEXT: linalg.generic {{{.*}}} %[[ARG1]], %[[GENERIC1_ALLOC]]
// CHECK: %[[GENERIC2_ALLOC:.*]] = alloc()
// CHECK-NEXT: linalg.generic {{{.*}}} %[[ARG1]], %[[GENERIC2_ALLOC]]
// CHECK: dealloc %[[GENERIC2_ALLOC]]
// CHECK-NEXT: %{{.*}} = exp
// CHECK: ^[[BB3:.*]]({{.*}}):
// CHECK: linalg.copy
// CHECK-NEXT: dealloc %[[GENERIC1_ALLOC]]
// -----
// Test Case: buffer deallocation escaping
// BufferPlacement Expected Behaviour: It must not dealloc %arg1 and %x
// since they are operands of return operation and should escape from
// deallocating. It should dealloc %y after linalg.copy.
#map0 = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func @memref_in_function_results
func @memref_in_function_results(%arg0: memref<5xf32>, %arg1: memref<10xf32>, %arg2: memref<5xf32>) -> (memref<10xf32>, memref<15xf32>) {
%x = alloc() : memref<15xf32>
%y = alloc() : memref<5xf32>
linalg.generic {args_in = 1 : i64, args_out = 1 : i64, indexing_maps = [#map0, #map0], iterator_types = ["parallel"]} %arg0, %y {
^bb0(%arg3: f32, %arg4: f32):
%2 = exp %arg3 : f32
linalg.yield %2 : f32
}: memref<5xf32>, memref<5xf32>
linalg.copy(%y, %arg2) : memref<5xf32>, memref<5xf32>
return %arg1, %x : memref<10xf32>, memref<15xf32>
}
// CHECK: (%[[ARG0:.*]]: memref<5xf32>, %[[ARG1:.*]]: memref<10xf32>, %[[RESULT:.*]]: memref<5xf32>)
// CHECK: %[[X:.*]] = alloc()
// CHECK: %[[Y:.*]] = alloc()
// CHECK: linalg.copy
// CHECK: dealloc %[[Y]]
// CHECK: return %[[ARG1]], %[[X]]
// -----
// Test Case: nested region control flow
// The alloc position of %1 does not need to be changed and flows through
// both if branches until it is finally returned. Hence, it does not
// require a specific dealloc operation. However, %3 requires a dealloc.
// CHECK-LABEL: func @nested_region_control_flow
func @nested_region_control_flow(
%arg0 : index,
%arg1 : index) -> memref<?x?xf32> {
%0 = cmpi "eq", %arg0, %arg1 : index
%1 = alloc(%arg0, %arg0) : memref<?x?xf32>
%2 = scf.if %0 -> (memref<?x?xf32>) {
scf.yield %1 : memref<?x?xf32>
} else {
%3 = alloc(%arg0, %arg1) : memref<?x?xf32>
scf.yield %1 : memref<?x?xf32>
}
return %2 : memref<?x?xf32>
}
// CHECK: %[[ALLOC0:.*]] = alloc(%arg0, %arg0)
// CHECK-NEXT: %[[ALLOC1:.*]] = scf.if
// CHECK: scf.yield %[[ALLOC0]]
// CHECK: %[[ALLOC2:.*]] = alloc(%arg0, %arg1)
// CHECK-NEXT: dealloc %[[ALLOC2]]
// CHECK-NEXT: scf.yield %[[ALLOC0]]
// CHECK: return %[[ALLOC1]]
// -----
// Test Case: nested region control flow with a nested buffer allocation in a
// divergent branch.
// The alloc positions of %1, %3 does not need to be changed since
// BufferPlacement does not move allocs out of nested regions at the moment.
// However, since %3 is allocated and "returned" in a divergent branch, we have
// to allocate a temporary buffer (like in condBranchDynamicTypeNested).
// CHECK-LABEL: func @nested_region_control_flow_div
func @nested_region_control_flow_div(
%arg0 : index,
%arg1 : index) -> memref<?x?xf32> {
%0 = cmpi "eq", %arg0, %arg1 : index
%1 = alloc(%arg0, %arg0) : memref<?x?xf32>
%2 = scf.if %0 -> (memref<?x?xf32>) {
scf.yield %1 : memref<?x?xf32>
} else {
%3 = alloc(%arg0, %arg1) : memref<?x?xf32>
scf.yield %3 : memref<?x?xf32>
}
return %2 : memref<?x?xf32>
}
// CHECK: %[[ALLOC0:.*]] = alloc(%arg0, %arg0)
// CHECK-NEXT: %[[ALLOC1:.*]] = scf.if
// CHECK: %[[ALLOC2:.*]] = alloc
// CHECK-NEXT: linalg.copy(%[[ALLOC0]], %[[ALLOC2]])
// CHECK: scf.yield %[[ALLOC2]]
// CHECK: %[[ALLOC3:.*]] = alloc(%arg0, %arg1)
// CHECK: %[[ALLOC4:.*]] = alloc
// CHECK-NEXT: linalg.copy(%[[ALLOC3]], %[[ALLOC4]])
// CHECK: dealloc %[[ALLOC3]]
// CHECK: scf.yield %[[ALLOC4]]
// CHECK: dealloc %[[ALLOC0]]
// CHECK-NEXT: return %[[ALLOC1]]
// -----
// Test Case: deeply nested region control flow with a nested buffer allocation
// in a divergent branch.
// The alloc positions of %1, %4 and %5 does not need to be changed since
// BufferPlacement does not move allocs out of nested regions at the moment.
// However, since %4 is allocated and "returned" in a divergent branch, we have
// to allocate several temporary buffers (like in condBranchDynamicTypeNested).
// CHECK-LABEL: func @nested_region_control_flow_div_nested
func @nested_region_control_flow_div_nested(
%arg0 : index,
%arg1 : index) -> memref<?x?xf32> {
%0 = cmpi "eq", %arg0, %arg1 : index
%1 = alloc(%arg0, %arg0) : memref<?x?xf32>
%2 = scf.if %0 -> (memref<?x?xf32>) {
%3 = scf.if %0 -> (memref<?x?xf32>) {
scf.yield %1 : memref<?x?xf32>
} else {
%4 = alloc(%arg0, %arg1) : memref<?x?xf32>
scf.yield %4 : memref<?x?xf32>
}
scf.yield %3 : memref<?x?xf32>
} else {
%5 = alloc(%arg1, %arg1) : memref<?x?xf32>
scf.yield %5 : memref<?x?xf32>
}
return %2 : memref<?x?xf32>
}
// CHECK: %[[ALLOC0:.*]] = alloc(%arg0, %arg0)
// CHECK-NEXT: %[[ALLOC1:.*]] = scf.if
// CHECK-NEXT: %[[ALLOC2:.*]] = scf.if
// CHECK: %[[ALLOC3:.*]] = alloc
// CHECK-NEXT: linalg.copy(%[[ALLOC0]], %[[ALLOC3]])
// CHECK: scf.yield %[[ALLOC3]]
// CHECK: %[[ALLOC4:.*]] = alloc(%arg0, %arg1)
// CHECK: %[[ALLOC5:.*]] = alloc
// CHECK-NEXT: linalg.copy(%[[ALLOC4]], %[[ALLOC5]])
// CHECK: dealloc %[[ALLOC4]]
// CHECK: scf.yield %[[ALLOC5]]
// CHECK: %[[ALLOC6:.*]] = alloc
// CHECK-NEXT: linalg.copy(%[[ALLOC2]], %[[ALLOC6]])
// CHECK: dealloc %[[ALLOC2]]
// CHECK: scf.yield %[[ALLOC6]]
// CHECK: %[[ALLOC7:.*]] = alloc(%arg1, %arg1)
// CHECK: %[[ALLOC8:.*]] = alloc
// CHECK-NEXT: linalg.copy(%[[ALLOC7]], %[[ALLOC8]])
// CHECK: dealloc %[[ALLOC7]]
// CHECK: scf.yield %[[ALLOC8]]
// CHECK: dealloc %[[ALLOC0]]
// CHECK-NEXT: return %[[ALLOC1]]
// -----
// Test Case: nested region control flow within a region interface.
// The alloc positions of %0 does not need to be changed and no copies are
// required in this case since the allocation finally escapes the method.
// CHECK-LABEL: func @inner_region_control_flow
func @inner_region_control_flow(%arg0 : index) -> memref<?x?xf32> {
%0 = alloc(%arg0, %arg0) : memref<?x?xf32>
%1 = test.region_if %0 : memref<?x?xf32> -> (memref<?x?xf32>) then {
^bb0(%arg1 : memref<?x?xf32>):
test.region_if_yield %arg1 : memref<?x?xf32>
} else {
^bb0(%arg1 : memref<?x?xf32>):
test.region_if_yield %arg1 : memref<?x?xf32>
} join {
^bb0(%arg1 : memref<?x?xf32>):
test.region_if_yield %arg1 : memref<?x?xf32>
}
return %1 : memref<?x?xf32>
}
// CHECK: %[[ALLOC0:.*]] = alloc(%arg0, %arg0)
// CHECK-NEXT: %[[ALLOC1:.*]] = test.region_if
// CHECK-NEXT: ^bb0(%[[ALLOC2:.*]]:{{.*}}):
// CHECK-NEXT: test.region_if_yield %[[ALLOC2]]
// CHECK: ^bb0(%[[ALLOC3:.*]]:{{.*}}):
// CHECK-NEXT: test.region_if_yield %[[ALLOC3]]
// CHECK: ^bb0(%[[ALLOC4:.*]]:{{.*}}):
// CHECK-NEXT: test.region_if_yield %[[ALLOC4]]
// CHECK: return %[[ALLOC1]]
// -----
// Test Case: nested region control flow within a region interface including an
// allocation in a divergent branch.
// The alloc positions of %1 and %2 does not need to be changed since
// BufferPlacement does not move allocs out of nested regions at the moment.
// However, since %2 is allocated and yielded in a divergent branch, we have
// to allocate several temporary buffers (like in condBranchDynamicTypeNested).
// CHECK-LABEL: func @inner_region_control_flow_div
func @inner_region_control_flow_div(
%arg0 : index,
%arg1 : index) -> memref<?x?xf32> {
%0 = alloc(%arg0, %arg0) : memref<?x?xf32>
%1 = test.region_if %0 : memref<?x?xf32> -> (memref<?x?xf32>) then {
^bb0(%arg2 : memref<?x?xf32>):
test.region_if_yield %arg2 : memref<?x?xf32>
} else {
^bb0(%arg2 : memref<?x?xf32>):
%2 = alloc(%arg0, %arg1) : memref<?x?xf32>
test.region_if_yield %2 : memref<?x?xf32>
} join {
^bb0(%arg2 : memref<?x?xf32>):
test.region_if_yield %arg2 : memref<?x?xf32>
}
return %1 : memref<?x?xf32>
}
// CHECK: %[[ALLOC0:.*]] = alloc(%arg0, %arg0)
// CHECK-NEXT: %[[ALLOC1:.*]] = test.region_if
// CHECK-NEXT: ^bb0(%[[ALLOC2:.*]]:{{.*}}):
// CHECK: %[[ALLOC3:.*]] = alloc
// CHECK-NEXT: linalg.copy(%[[ALLOC2]], %[[ALLOC3]])
// CHECK-NEXT: test.region_if_yield %[[ALLOC3]]
// CHECK: ^bb0(%[[ALLOC4:.*]]:{{.*}}):
// CHECK: %[[ALLOC5:.*]] = alloc
// CHECK: %[[ALLOC6:.*]] = alloc
// CHECK-NEXT: linalg.copy(%[[ALLOC5]], %[[ALLOC6]])
// CHECK-NEXT: dealloc %[[ALLOC5]]
// CHECK-NEXT: test.region_if_yield %[[ALLOC6]]
// CHECK: ^bb0(%[[ALLOC7:.*]]:{{.*}}):
// CHECK: %[[ALLOC8:.*]] = alloc
// CHECK-NEXT: linalg.copy(%[[ALLOC7]], %[[ALLOC8]])
// CHECK-NEXT: dealloc %[[ALLOC7]]
// CHECK-NEXT: test.region_if_yield %[[ALLOC8]]
// CHECK: dealloc %[[ALLOC0]]
// CHECK-NEXT: return %[[ALLOC1]]
// -----
// CHECK-LABEL: func @subview
func @subview(%arg0 : index, %arg1 : index, %arg2 : memref<?x?xf32>) {
%0 = alloc() : memref<64x4xf32, offset: 0, strides: [4, 1]>
%1 = subview %0[%arg0, %arg1][%arg0, %arg1][%arg0, %arg1] :
memref<64x4xf32, offset: 0, strides: [4, 1]>
to memref<?x?xf32, offset: ?, strides: [?, ?]>
"linalg.copy"(%1, %arg2) :
(memref<?x?xf32, offset: ?, strides: [?, ?]>, memref<?x?xf32>) -> ()
return
}
// CHECK-NEXT: %[[ALLOC:.*]] = alloc()
// CHECK-NEXT: subview
// CHECK-NEXT: linalg.copy
// CHECK-NEXT: dealloc %[[ALLOC]]
// CHECK-NEXT: return