Files
clang-p2996/mlir/test/python/dialects/quant.py
Alex Zinenko 66d4090d9b [mlir] Introduce Python bindings for the quantization dialect
So far, only the custom dialect types are exposed.

The build and packaging is same as for Linalg and SparseTensor, and in
need of refactoring that is beyond the scope of this patch.

Reviewed By: stellaraccident

Differential Revision: https://reviews.llvm.org/D116605
2022-01-05 16:26:31 +01:00

132 lines
4.3 KiB
Python

# RUN: %PYTHON %s | FileCheck %s
from mlir.ir import *
from mlir.dialects import quant
def run(f):
print("\nTEST:", f.__name__)
f()
return f
# CHECK-LABEL: TEST: test_type_hierarchy
@run
def test_type_hierarchy():
with Context():
i8 = IntegerType.get_signless(8)
any = Type.parse("!quant.any<i8<-8:7>:f32>")
uniform = Type.parse("!quant.uniform<i8<-8:7>:f32, 0.99872:127>")
per_axis = Type.parse("!quant.uniform<i8:f32:1, {2.0e+2,0.99872:120}>")
calibrated = Type.parse("!quant.calibrated<f32<-0.998:1.2321>>")
assert not quant.QuantizedType.isinstance(i8)
assert quant.QuantizedType.isinstance(any)
assert quant.QuantizedType.isinstance(uniform)
assert quant.QuantizedType.isinstance(per_axis)
assert quant.QuantizedType.isinstance(calibrated)
assert quant.AnyQuantizedType.isinstance(any)
assert quant.UniformQuantizedType.isinstance(uniform)
assert quant.UniformQuantizedPerAxisType.isinstance(per_axis)
assert quant.CalibratedQuantizedType.isinstance(calibrated)
assert not quant.AnyQuantizedType.isinstance(uniform)
assert not quant.UniformQuantizedType.isinstance(per_axis)
# CHECK-LABEL: TEST: test_any_quantized_type
@run
def test_any_quantized_type():
with Context():
i8 = IntegerType.get_signless(8)
f32 = F32Type.get()
any = quant.AnyQuantizedType.get(quant.QuantizedType.FLAG_SIGNED, i8, f32,
-8, 7)
# CHECK: flags: 1
print(f"flags: {any.flags}")
# CHECK: signed: True
print(f"signed: {any.is_signed}")
# CHECK: storage type: i8
print(f"storage type: {any.storage_type}")
# CHECK: expressed type: f32
print(f"expressed type: {any.expressed_type}")
# CHECK: storage min: -8
print(f"storage min: {any.storage_type_min}")
# CHECK: storage max: 7
print(f"storage max: {any.storage_type_max}")
# CHECK: storage width: 8
print(f"storage width: {any.storage_type_integral_width}")
# CHECK: quantized element type: !quant.any<i8<-8:7>:f32>
print(f"quantized element type: {any.quantized_element_type}")
# CHECK: !quant.any<i8<-8:7>:f32>
print(any)
assert any == Type.parse("!quant.any<i8<-8:7>:f32>")
# CHECK-LABEL: TEST: test_uniform_type
@run
def test_uniform_type():
with Context():
i8 = IntegerType.get_signless(8)
f32 = F32Type.get()
uniform = quant.UniformQuantizedType.get(
quant.UniformQuantizedType.FLAG_SIGNED, i8, f32, 0.99872, 127, -8, 7)
# CHECK: scale: 0.99872
print(f"scale: {uniform.scale}")
# CHECK: zero point: 127
print(f"zero point: {uniform.zero_point}")
# CHECK: fixed point: False
print(f"fixed point: {uniform.is_fixed_point}")
# CHECK: !quant.uniform<i8<-8:7>:f32, 9.987200e-01:127>
print(uniform)
assert uniform == Type.parse("!quant.uniform<i8<-8:7>:f32, 0.99872:127>")
# CHECK-LABEL: TEST: test_uniform_per_axis_type
@run
def test_uniform_per_axis_type():
with Context():
i8 = IntegerType.get_signless(8)
f32 = F32Type.get()
per_axis = quant.UniformQuantizedPerAxisType.get(
quant.QuantizedType.FLAG_SIGNED,
i8,
f32, [200, 0.99872], [0, 120],
quantized_dimension=1,
storage_type_min=quant.QuantizedType.default_minimum_for_integer(
is_signed=True, integral_width=8),
storage_type_max=quant.QuantizedType.default_maximum_for_integer(
is_signed=True, integral_width=8))
# CHECK: scales: None
print(f"scales: {per_axis.scales}")
# CHECK: zero_points: None
print(f"zero_points: {per_axis.zero_points}")
# CHECK: quantized dim: 1
print(f"quantized dim: {per_axis.quantized_dimension}")
# CHECK: fixed point: False
print(f"fixed point: {per_axis.is_fixed_point}")
# CHECK: !quant.uniform<i8:f32:1, {2.000000e+02,9.987200e-01:120}>
print(per_axis)
assert per_axis == Type.parse(
"!quant.uniform<i8:f32:1, {2.0e+2,0.99872:120}>")
# CHECK-LABEL: TEST: test_calibrated_type
@run
def test_calibrated_type():
with Context():
f32 = F32Type.get()
calibrated = quant.CalibratedQuantizedType.get(f32, -0.998, 1.2321)
# CHECK: min: -0.998
print(f"min: {calibrated.min}")
# CHECK: max: 1.2321
print(f"max: {calibrated.max}")
# CHECK: !quant.calibrated<f32<-0.998:1.232100e+00>>
print(calibrated)
assert calibrated == Type.parse("!quant.calibrated<f32<-0.998:1.2321>>")