Files
clang-p2996/clang/lib/StaticAnalyzer/Core/RangeConstraintManager.cpp
Artem Dergachev bbc6d68297 [analyzer] Fix the "Zombie Symbols" bug.
It's an old bug that consists in stale references to symbols remaining in the
GDM if they disappear from other program state sections as a result of any
operation that isn't the actual dead symbol collection. The most common example
here is:

   FILE *fp = fopen("myfile.txt", "w");
   fp = 0; // leak of file descriptor

In this example the leak were not detected previously because the symbol
disappears from the public part of the program state due to evaluating
the assignment. For that reason the checker never receives a notification
that the symbol is dead, and never reports a leak.

This patch not only causes leak false negatives, but also a number of other
problems, including false positives on some checkers.

What's worse, even though the program state contains a finite number of symbols,
the set of symbols that dies is potentially infinite. This means that is
impossible to compute the set of all dead symbols to pass off to the checkers
for cleaning up their part of the GDM.

No longer compute the dead set at all. Disallow iterating over dead symbols.
Disallow querying if any symbols are dead. Remove the API for marking symbols
as dead, as it is no longer necessary. Update checkers accordingly.

Differential Revision: https://reviews.llvm.org/D18860

llvm-svn: 347953
2018-11-30 03:27:50 +00:00

752 lines
28 KiB
C++

//== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines RangeConstraintManager, a class that tracks simple
// equality and inequality constraints on symbolic values of ProgramState.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/ImmutableSet.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace ento;
void RangeSet::IntersectInRange(BasicValueFactory &BV, Factory &F,
const llvm::APSInt &Lower, const llvm::APSInt &Upper,
PrimRangeSet &newRanges, PrimRangeSet::iterator &i,
PrimRangeSet::iterator &e) const {
// There are six cases for each range R in the set:
// 1. R is entirely before the intersection range.
// 2. R is entirely after the intersection range.
// 3. R contains the entire intersection range.
// 4. R starts before the intersection range and ends in the middle.
// 5. R starts in the middle of the intersection range and ends after it.
// 6. R is entirely contained in the intersection range.
// These correspond to each of the conditions below.
for (/* i = begin(), e = end() */; i != e; ++i) {
if (i->To() < Lower) {
continue;
}
if (i->From() > Upper) {
break;
}
if (i->Includes(Lower)) {
if (i->Includes(Upper)) {
newRanges =
F.add(newRanges, Range(BV.getValue(Lower), BV.getValue(Upper)));
break;
} else
newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
} else {
if (i->Includes(Upper)) {
newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
break;
} else
newRanges = F.add(newRanges, *i);
}
}
}
const llvm::APSInt &RangeSet::getMinValue() const {
assert(!isEmpty());
return ranges.begin()->From();
}
bool RangeSet::pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
// This function has nine cases, the cartesian product of range-testing
// both the upper and lower bounds against the symbol's type.
// Each case requires a different pinning operation.
// The function returns false if the described range is entirely outside
// the range of values for the associated symbol.
APSIntType Type(getMinValue());
APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);
switch (LowerTest) {
case APSIntType::RTR_Below:
switch (UpperTest) {
case APSIntType::RTR_Below:
// The entire range is outside the symbol's set of possible values.
// If this is a conventionally-ordered range, the state is infeasible.
if (Lower <= Upper)
return false;
// However, if the range wraps around, it spans all possible values.
Lower = Type.getMinValue();
Upper = Type.getMaxValue();
break;
case APSIntType::RTR_Within:
// The range starts below what's possible but ends within it. Pin.
Lower = Type.getMinValue();
Type.apply(Upper);
break;
case APSIntType::RTR_Above:
// The range spans all possible values for the symbol. Pin.
Lower = Type.getMinValue();
Upper = Type.getMaxValue();
break;
}
break;
case APSIntType::RTR_Within:
switch (UpperTest) {
case APSIntType::RTR_Below:
// The range wraps around, but all lower values are not possible.
Type.apply(Lower);
Upper = Type.getMaxValue();
break;
case APSIntType::RTR_Within:
// The range may or may not wrap around, but both limits are valid.
Type.apply(Lower);
Type.apply(Upper);
break;
case APSIntType::RTR_Above:
// The range starts within what's possible but ends above it. Pin.
Type.apply(Lower);
Upper = Type.getMaxValue();
break;
}
break;
case APSIntType::RTR_Above:
switch (UpperTest) {
case APSIntType::RTR_Below:
// The range wraps but is outside the symbol's set of possible values.
return false;
case APSIntType::RTR_Within:
// The range starts above what's possible but ends within it (wrap).
Lower = Type.getMinValue();
Type.apply(Upper);
break;
case APSIntType::RTR_Above:
// The entire range is outside the symbol's set of possible values.
// If this is a conventionally-ordered range, the state is infeasible.
if (Lower <= Upper)
return false;
// However, if the range wraps around, it spans all possible values.
Lower = Type.getMinValue();
Upper = Type.getMaxValue();
break;
}
break;
}
return true;
}
// Returns a set containing the values in the receiving set, intersected with
// the closed range [Lower, Upper]. Unlike the Range type, this range uses
// modular arithmetic, corresponding to the common treatment of C integer
// overflow. Thus, if the Lower bound is greater than the Upper bound, the
// range is taken to wrap around. This is equivalent to taking the
// intersection with the two ranges [Min, Upper] and [Lower, Max],
// or, alternatively, /removing/ all integers between Upper and Lower.
RangeSet RangeSet::Intersect(BasicValueFactory &BV, Factory &F,
llvm::APSInt Lower, llvm::APSInt Upper) const {
if (!pin(Lower, Upper))
return F.getEmptySet();
PrimRangeSet newRanges = F.getEmptySet();
PrimRangeSet::iterator i = begin(), e = end();
if (Lower <= Upper)
IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
else {
// The order of the next two statements is important!
// IntersectInRange() does not reset the iteration state for i and e.
// Therefore, the lower range most be handled first.
IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
}
return newRanges;
}
// Turn all [A, B] ranges to [-B, -A]. Ranges [MIN, B] are turned to range set
// [MIN, MIN] U [-B, MAX], when MIN and MAX are the minimal and the maximal
// signed values of the type.
RangeSet RangeSet::Negate(BasicValueFactory &BV, Factory &F) const {
PrimRangeSet newRanges = F.getEmptySet();
for (iterator i = begin(), e = end(); i != e; ++i) {
const llvm::APSInt &from = i->From(), &to = i->To();
const llvm::APSInt &newTo = (from.isMinSignedValue() ?
BV.getMaxValue(from) :
BV.getValue(- from));
if (to.isMaxSignedValue() && !newRanges.isEmpty() &&
newRanges.begin()->From().isMinSignedValue()) {
assert(newRanges.begin()->To().isMinSignedValue() &&
"Ranges should not overlap");
assert(!from.isMinSignedValue() && "Ranges should not overlap");
const llvm::APSInt &newFrom = newRanges.begin()->From();
newRanges =
F.add(F.remove(newRanges, *newRanges.begin()), Range(newFrom, newTo));
} else if (!to.isMinSignedValue()) {
const llvm::APSInt &newFrom = BV.getValue(- to);
newRanges = F.add(newRanges, Range(newFrom, newTo));
}
if (from.isMinSignedValue()) {
newRanges = F.add(newRanges, Range(BV.getMinValue(from),
BV.getMinValue(from)));
}
}
return newRanges;
}
void RangeSet::print(raw_ostream &os) const {
bool isFirst = true;
os << "{ ";
for (iterator i = begin(), e = end(); i != e; ++i) {
if (isFirst)
isFirst = false;
else
os << ", ";
os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
<< ']';
}
os << " }";
}
namespace {
class RangeConstraintManager : public RangedConstraintManager {
public:
RangeConstraintManager(SubEngine *SE, SValBuilder &SVB)
: RangedConstraintManager(SE, SVB) {}
//===------------------------------------------------------------------===//
// Implementation for interface from ConstraintManager.
//===------------------------------------------------------------------===//
bool canReasonAbout(SVal X) const override;
ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;
const llvm::APSInt *getSymVal(ProgramStateRef State,
SymbolRef Sym) const override;
ProgramStateRef removeDeadBindings(ProgramStateRef State,
SymbolReaper &SymReaper) override;
void print(ProgramStateRef State, raw_ostream &Out, const char *nl,
const char *sep) override;
//===------------------------------------------------------------------===//
// Implementation for interface from RangedConstraintManager.
//===------------------------------------------------------------------===//
ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym,
const llvm::APSInt &V,
const llvm::APSInt &Adjustment) override;
ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym,
const llvm::APSInt &V,
const llvm::APSInt &Adjustment) override;
ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym,
const llvm::APSInt &V,
const llvm::APSInt &Adjustment) override;
ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym,
const llvm::APSInt &V,
const llvm::APSInt &Adjustment) override;
ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym,
const llvm::APSInt &V,
const llvm::APSInt &Adjustment) override;
ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym,
const llvm::APSInt &V,
const llvm::APSInt &Adjustment) override;
ProgramStateRef assumeSymWithinInclusiveRange(
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
ProgramStateRef assumeSymOutsideInclusiveRange(
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
private:
RangeSet::Factory F;
RangeSet getRange(ProgramStateRef State, SymbolRef Sym);
const RangeSet* getRangeForMinusSymbol(ProgramStateRef State,
SymbolRef Sym);
RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym,
const llvm::APSInt &Int,
const llvm::APSInt &Adjustment);
RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym,
const llvm::APSInt &Int,
const llvm::APSInt &Adjustment);
RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym,
const llvm::APSInt &Int,
const llvm::APSInt &Adjustment);
RangeSet getSymLERange(llvm::function_ref<RangeSet()> RS,
const llvm::APSInt &Int,
const llvm::APSInt &Adjustment);
RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym,
const llvm::APSInt &Int,
const llvm::APSInt &Adjustment);
};
} // end anonymous namespace
std::unique_ptr<ConstraintManager>
ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine *Eng) {
return llvm::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder());
}
bool RangeConstraintManager::canReasonAbout(SVal X) const {
Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
if (SymVal && SymVal->isExpression()) {
const SymExpr *SE = SymVal->getSymbol();
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
switch (SIE->getOpcode()) {
// We don't reason yet about bitwise-constraints on symbolic values.
case BO_And:
case BO_Or:
case BO_Xor:
return false;
// We don't reason yet about these arithmetic constraints on
// symbolic values.
case BO_Mul:
case BO_Div:
case BO_Rem:
case BO_Shl:
case BO_Shr:
return false;
// All other cases.
default:
return true;
}
}
if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
// FIXME: Handle <=> here.
if (BinaryOperator::isEqualityOp(SSE->getOpcode()) ||
BinaryOperator::isRelationalOp(SSE->getOpcode())) {
// We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc.
// We've recently started producing Loc <> NonLoc comparisons (that
// result from casts of one of the operands between eg. intptr_t and
// void *), but we can't reason about them yet.
if (Loc::isLocType(SSE->getLHS()->getType())) {
return Loc::isLocType(SSE->getRHS()->getType());
}
}
}
return false;
}
return true;
}
ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
SymbolRef Sym) {
const RangeSet *Ranges = State->get<ConstraintRange>(Sym);
// If we don't have any information about this symbol, it's underconstrained.
if (!Ranges)
return ConditionTruthVal();
// If we have a concrete value, see if it's zero.
if (const llvm::APSInt *Value = Ranges->getConcreteValue())
return *Value == 0;
BasicValueFactory &BV = getBasicVals();
APSIntType IntType = BV.getAPSIntType(Sym->getType());
llvm::APSInt Zero = IntType.getZeroValue();
// Check if zero is in the set of possible values.
if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty())
return false;
// Zero is a possible value, but it is not the /only/ possible value.
return ConditionTruthVal();
}
const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St,
SymbolRef Sym) const {
const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(Sym);
return T ? T->getConcreteValue() : nullptr;
}
/// Scan all symbols referenced by the constraints. If the symbol is not alive
/// as marked in LSymbols, mark it as dead in DSymbols.
ProgramStateRef
RangeConstraintManager::removeDeadBindings(ProgramStateRef State,
SymbolReaper &SymReaper) {
bool Changed = false;
ConstraintRangeTy CR = State->get<ConstraintRange>();
ConstraintRangeTy::Factory &CRFactory = State->get_context<ConstraintRange>();
for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
SymbolRef Sym = I.getKey();
if (SymReaper.isDead(Sym)) {
Changed = true;
CR = CRFactory.remove(CR, Sym);
}
}
return Changed ? State->set<ConstraintRange>(CR) : State;
}
/// Return a range set subtracting zero from \p Domain.
static RangeSet assumeNonZero(
BasicValueFactory &BV,
RangeSet::Factory &F,
SymbolRef Sym,
RangeSet Domain) {
APSIntType IntType = BV.getAPSIntType(Sym->getType());
return Domain.Intersect(BV, F, ++IntType.getZeroValue(),
--IntType.getZeroValue());
}
/// Apply implicit constraints for bitwise OR- and AND-.
/// For unsigned types, bitwise OR with a constant always returns
/// a value greater-or-equal than the constant, and bitwise AND
/// returns a value less-or-equal then the constant.
///
/// Pattern matches the expression \p Sym against those rule,
/// and applies the required constraints.
/// \p Input Previously established expression range set
static RangeSet applyBitwiseConstraints(
BasicValueFactory &BV,
RangeSet::Factory &F,
RangeSet Input,
const SymIntExpr* SIE) {
QualType T = SIE->getType();
bool IsUnsigned = T->isUnsignedIntegerType();
const llvm::APSInt &RHS = SIE->getRHS();
const llvm::APSInt &Zero = BV.getAPSIntType(T).getZeroValue();
BinaryOperator::Opcode Operator = SIE->getOpcode();
// For unsigned types, the output of bitwise-or is bigger-or-equal than RHS.
if (Operator == BO_Or && IsUnsigned)
return Input.Intersect(BV, F, RHS, BV.getMaxValue(T));
// Bitwise-or with a non-zero constant is always non-zero.
if (Operator == BO_Or && RHS != Zero)
return assumeNonZero(BV, F, SIE, Input);
// For unsigned types, or positive RHS,
// bitwise-and output is always smaller-or-equal than RHS (assuming two's
// complement representation of signed types).
if (Operator == BO_And && (IsUnsigned || RHS >= Zero))
return Input.Intersect(BV, F, BV.getMinValue(T), RHS);
return Input;
}
RangeSet RangeConstraintManager::getRange(ProgramStateRef State,
SymbolRef Sym) {
if (ConstraintRangeTy::data_type *V = State->get<ConstraintRange>(Sym))
return *V;
BasicValueFactory &BV = getBasicVals();
// If Sym is a difference of symbols A - B, then maybe we have range set
// stored for B - A.
if (const RangeSet *R = getRangeForMinusSymbol(State, Sym))
return R->Negate(BV, F);
// Lazily generate a new RangeSet representing all possible values for the
// given symbol type.
QualType T = Sym->getType();
RangeSet Result(F, BV.getMinValue(T), BV.getMaxValue(T));
// References are known to be non-zero.
if (T->isReferenceType())
return assumeNonZero(BV, F, Sym, Result);
// Known constraints on ranges of bitwise expressions.
if (const SymIntExpr* SIE = dyn_cast<SymIntExpr>(Sym))
return applyBitwiseConstraints(BV, F, Result, SIE);
return Result;
}
// FIXME: Once SValBuilder supports unary minus, we should use SValBuilder to
// obtain the negated symbolic expression instead of constructing the
// symbol manually. This will allow us to support finding ranges of not
// only negated SymSymExpr-type expressions, but also of other, simpler
// expressions which we currently do not know how to negate.
const RangeSet*
RangeConstraintManager::getRangeForMinusSymbol(ProgramStateRef State,
SymbolRef Sym) {
if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(Sym)) {
if (SSE->getOpcode() == BO_Sub) {
QualType T = Sym->getType();
SymbolManager &SymMgr = State->getSymbolManager();
SymbolRef negSym = SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub,
SSE->getLHS(), T);
if (const RangeSet *negV = State->get<ConstraintRange>(negSym)) {
// Unsigned range set cannot be negated, unless it is [0, 0].
if ((negV->getConcreteValue() &&
(*negV->getConcreteValue() == 0)) ||
T->isSignedIntegerOrEnumerationType())
return negV;
}
}
}
return nullptr;
}
//===------------------------------------------------------------------------===
// assumeSymX methods: protected interface for RangeConstraintManager.
//===------------------------------------------------------------------------===/
// The syntax for ranges below is mathematical, using [x, y] for closed ranges
// and (x, y) for open ranges. These ranges are modular, corresponding with
// a common treatment of C integer overflow. This means that these methods
// do not have to worry about overflow; RangeSet::Intersect can handle such a
// "wraparound" range.
// As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
// UINT_MAX, 0, 1, and 2.
ProgramStateRef
RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
const llvm::APSInt &Int,
const llvm::APSInt &Adjustment) {
// Before we do any real work, see if the value can even show up.
APSIntType AdjustmentType(Adjustment);
if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
return St;
llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment;
llvm::APSInt Upper = Lower;
--Lower;
++Upper;
// [Int-Adjustment+1, Int-Adjustment-1]
// Notice that the lower bound is greater than the upper bound.
RangeSet New = getRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower);
return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
}
ProgramStateRef
RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
const llvm::APSInt &Int,
const llvm::APSInt &Adjustment) {
// Before we do any real work, see if the value can even show up.
APSIntType AdjustmentType(Adjustment);
if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
return nullptr;
// [Int-Adjustment, Int-Adjustment]
llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
RangeSet New = getRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt);
return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
}
RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St,
SymbolRef Sym,
const llvm::APSInt &Int,
const llvm::APSInt &Adjustment) {
// Before we do any real work, see if the value can even show up.
APSIntType AdjustmentType(Adjustment);
switch (AdjustmentType.testInRange(Int, true)) {
case APSIntType::RTR_Below:
return F.getEmptySet();
case APSIntType::RTR_Within:
break;
case APSIntType::RTR_Above:
return getRange(St, Sym);
}
// Special case for Int == Min. This is always false.
llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
llvm::APSInt Min = AdjustmentType.getMinValue();
if (ComparisonVal == Min)
return F.getEmptySet();
llvm::APSInt Lower = Min - Adjustment;
llvm::APSInt Upper = ComparisonVal - Adjustment;
--Upper;
return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
}
ProgramStateRef
RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
const llvm::APSInt &Int,
const llvm::APSInt &Adjustment) {
RangeSet New = getSymLTRange(St, Sym, Int, Adjustment);
return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
}
RangeSet RangeConstraintManager::getSymGTRange(ProgramStateRef St,
SymbolRef Sym,
const llvm::APSInt &Int,
const llvm::APSInt &Adjustment) {
// Before we do any real work, see if the value can even show up.
APSIntType AdjustmentType(Adjustment);
switch (AdjustmentType.testInRange(Int, true)) {
case APSIntType::RTR_Below:
return getRange(St, Sym);
case APSIntType::RTR_Within:
break;
case APSIntType::RTR_Above:
return F.getEmptySet();
}
// Special case for Int == Max. This is always false.
llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
llvm::APSInt Max = AdjustmentType.getMaxValue();
if (ComparisonVal == Max)
return F.getEmptySet();
llvm::APSInt Lower = ComparisonVal - Adjustment;
llvm::APSInt Upper = Max - Adjustment;
++Lower;
return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
}
ProgramStateRef
RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
const llvm::APSInt &Int,
const llvm::APSInt &Adjustment) {
RangeSet New = getSymGTRange(St, Sym, Int, Adjustment);
return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
}
RangeSet RangeConstraintManager::getSymGERange(ProgramStateRef St,
SymbolRef Sym,
const llvm::APSInt &Int,
const llvm::APSInt &Adjustment) {
// Before we do any real work, see if the value can even show up.
APSIntType AdjustmentType(Adjustment);
switch (AdjustmentType.testInRange(Int, true)) {
case APSIntType::RTR_Below:
return getRange(St, Sym);
case APSIntType::RTR_Within:
break;
case APSIntType::RTR_Above:
return F.getEmptySet();
}
// Special case for Int == Min. This is always feasible.
llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
llvm::APSInt Min = AdjustmentType.getMinValue();
if (ComparisonVal == Min)
return getRange(St, Sym);
llvm::APSInt Max = AdjustmentType.getMaxValue();
llvm::APSInt Lower = ComparisonVal - Adjustment;
llvm::APSInt Upper = Max - Adjustment;
return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
}
ProgramStateRef
RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
const llvm::APSInt &Int,
const llvm::APSInt &Adjustment) {
RangeSet New = getSymGERange(St, Sym, Int, Adjustment);
return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
}
RangeSet RangeConstraintManager::getSymLERange(
llvm::function_ref<RangeSet()> RS,
const llvm::APSInt &Int,
const llvm::APSInt &Adjustment) {
// Before we do any real work, see if the value can even show up.
APSIntType AdjustmentType(Adjustment);
switch (AdjustmentType.testInRange(Int, true)) {
case APSIntType::RTR_Below:
return F.getEmptySet();
case APSIntType::RTR_Within:
break;
case APSIntType::RTR_Above:
return RS();
}
// Special case for Int == Max. This is always feasible.
llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
llvm::APSInt Max = AdjustmentType.getMaxValue();
if (ComparisonVal == Max)
return RS();
llvm::APSInt Min = AdjustmentType.getMinValue();
llvm::APSInt Lower = Min - Adjustment;
llvm::APSInt Upper = ComparisonVal - Adjustment;
return RS().Intersect(getBasicVals(), F, Lower, Upper);
}
RangeSet RangeConstraintManager::getSymLERange(ProgramStateRef St,
SymbolRef Sym,
const llvm::APSInt &Int,
const llvm::APSInt &Adjustment) {
return getSymLERange([&] { return getRange(St, Sym); }, Int, Adjustment);
}
ProgramStateRef
RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
const llvm::APSInt &Int,
const llvm::APSInt &Adjustment) {
RangeSet New = getSymLERange(St, Sym, Int, Adjustment);
return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
}
ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange(
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
RangeSet New = getSymGERange(State, Sym, From, Adjustment);
if (New.isEmpty())
return nullptr;
RangeSet Out = getSymLERange([&] { return New; }, To, Adjustment);
return Out.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, Out);
}
ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange(
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment);
RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment);
RangeSet New(RangeLT.addRange(F, RangeGT));
return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New);
}
//===------------------------------------------------------------------------===
// Pretty-printing.
//===------------------------------------------------------------------------===/
void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out,
const char *nl, const char *sep) {
ConstraintRangeTy Ranges = St->get<ConstraintRange>();
if (Ranges.isEmpty()) {
Out << nl << sep << "Ranges are empty." << nl;
return;
}
Out << nl << sep << "Ranges of symbol values:";
for (ConstraintRangeTy::iterator I = Ranges.begin(), E = Ranges.end(); I != E;
++I) {
Out << nl << ' ' << I.getKey() << " : ";
I.getData().print(Out);
}
Out << nl;
}