Terminator folding transform lacks MemorySSA update for memory Phis, while they exist within MemorySSA analysis. They need exactly the same type of updates as regular Phis. Failing to update them properly ends up with inconsistent MemorySSA and manifests in various assertion failures. This patch adds Memory Phi updates to this transform. Thanks to @jonpa for finding this! Differential Revision: https://reviews.llvm.org/D55050 Reviewed By: asbirlea llvm-svn: 347979
492 lines
18 KiB
C++
492 lines
18 KiB
C++
//===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Loop SimplifyCFG Pass. This pass is responsible for
|
|
// basic loop CFG cleanup, primarily to assist other loop passes. If you
|
|
// encounter a noncanonical CFG construct that causes another loop pass to
|
|
// perform suboptimally, this is the place to fix it up.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
|
#include "llvm/Analysis/DependenceAnalysis.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/MemorySSA.h"
|
|
#include "llvm/Analysis/MemorySSAUpdater.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/DomTreeUpdater.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Scalar/LoopPassManager.h"
|
|
#include "llvm/Transforms/Utils.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "loop-simplifycfg"
|
|
|
|
static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
|
|
cl::init(true));
|
|
|
|
STATISTIC(NumTerminatorsFolded,
|
|
"Number of terminators folded to unconditional branches");
|
|
|
|
/// If \p BB is a switch or a conditional branch, but only one of its successors
|
|
/// can be reached from this block in runtime, return this successor. Otherwise,
|
|
/// return nullptr.
|
|
static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
|
|
Instruction *TI = BB->getTerminator();
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
|
|
if (BI->isUnconditional())
|
|
return nullptr;
|
|
if (BI->getSuccessor(0) == BI->getSuccessor(1))
|
|
return BI->getSuccessor(0);
|
|
ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
|
|
if (!Cond)
|
|
return nullptr;
|
|
return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
|
|
}
|
|
|
|
if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
|
|
auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
|
|
if (!CI)
|
|
return nullptr;
|
|
for (auto Case : SI->cases())
|
|
if (Case.getCaseValue() == CI)
|
|
return Case.getCaseSuccessor();
|
|
return SI->getDefaultDest();
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Helper class that can turn branches and switches with constant conditions
|
|
/// into unconditional branches.
|
|
class ConstantTerminatorFoldingImpl {
|
|
private:
|
|
Loop &L;
|
|
LoopInfo &LI;
|
|
DominatorTree &DT;
|
|
MemorySSAUpdater *MSSAU;
|
|
|
|
// Whether or not the current loop will still exist after terminator constant
|
|
// folding will be done. In theory, there are two ways how it can happen:
|
|
// 1. Loop's latch(es) become unreachable from loop header;
|
|
// 2. Loop's header becomes unreachable from method entry.
|
|
// In practice, the second situation is impossible because we only modify the
|
|
// current loop and its preheader and do not affect preheader's reachibility
|
|
// from any other block. So this variable set to true means that loop's latch
|
|
// has become unreachable from loop header.
|
|
bool DeleteCurrentLoop = false;
|
|
|
|
// The blocks of the original loop that will still be reachable from entry
|
|
// after the constant folding.
|
|
SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
|
|
// The blocks of the original loop that will become unreachable from entry
|
|
// after the constant folding.
|
|
SmallPtrSet<BasicBlock *, 8> DeadLoopBlocks;
|
|
// The exits of the original loop that will still be reachable from entry
|
|
// after the constant folding.
|
|
SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
|
|
// The exits of the original loop that will become unreachable from entry
|
|
// after the constant folding.
|
|
SmallVector<BasicBlock *, 8> DeadExitBlocks;
|
|
// The blocks that will still be a part of the current loop after folding.
|
|
SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
|
|
// The blocks that have terminators with constant condition that can be
|
|
// folded. Note: fold candidates should be in L but not in any of its
|
|
// subloops to avoid complex LI updates.
|
|
SmallVector<BasicBlock *, 8> FoldCandidates;
|
|
|
|
void dump() const {
|
|
dbgs() << "Constant terminator folding for loop " << L << "\n";
|
|
dbgs() << "After terminator constant-folding, the loop will";
|
|
if (!DeleteCurrentLoop)
|
|
dbgs() << " not";
|
|
dbgs() << " be destroyed\n";
|
|
auto PrintOutVector = [&](const char *Message,
|
|
const SmallVectorImpl<BasicBlock *> &S) {
|
|
dbgs() << Message << "\n";
|
|
for (const BasicBlock *BB : S)
|
|
dbgs() << "\t" << BB->getName() << "\n";
|
|
};
|
|
auto PrintOutSet = [&](const char *Message,
|
|
const SmallPtrSetImpl<BasicBlock *> &S) {
|
|
dbgs() << Message << "\n";
|
|
for (const BasicBlock *BB : S)
|
|
dbgs() << "\t" << BB->getName() << "\n";
|
|
};
|
|
PrintOutVector("Blocks in which we can constant-fold terminator:",
|
|
FoldCandidates);
|
|
PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
|
|
PrintOutSet("Dead blocks from the original loop:", DeadLoopBlocks);
|
|
PrintOutSet("Live exit blocks:", LiveExitBlocks);
|
|
PrintOutVector("Dead exit blocks:", DeadExitBlocks);
|
|
if (!DeleteCurrentLoop)
|
|
PrintOutSet("The following blocks will still be part of the loop:",
|
|
BlocksInLoopAfterFolding);
|
|
}
|
|
|
|
/// Fill all information about status of blocks and exits of the current loop
|
|
/// if constant folding of all branches will be done.
|
|
void analyze() {
|
|
LoopBlocksDFS DFS(&L);
|
|
DFS.perform(&LI);
|
|
assert(DFS.isComplete() && "DFS is expected to be finished");
|
|
|
|
// Collect live and dead loop blocks and exits.
|
|
LiveLoopBlocks.insert(L.getHeader());
|
|
for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
|
|
BasicBlock *BB = *I;
|
|
|
|
// If a loop block wasn't marked as live so far, then it's dead.
|
|
if (!LiveLoopBlocks.count(BB)) {
|
|
DeadLoopBlocks.insert(BB);
|
|
continue;
|
|
}
|
|
|
|
BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
|
|
|
|
// If a block has only one live successor, it's a candidate on constant
|
|
// folding. Only handle blocks from current loop: branches in child loops
|
|
// are skipped because if they can be folded, they should be folded during
|
|
// the processing of child loops.
|
|
if (TheOnlySucc && LI.getLoopFor(BB) == &L)
|
|
FoldCandidates.push_back(BB);
|
|
|
|
// Handle successors.
|
|
for (BasicBlock *Succ : successors(BB))
|
|
if (!TheOnlySucc || TheOnlySucc == Succ) {
|
|
if (L.contains(Succ))
|
|
LiveLoopBlocks.insert(Succ);
|
|
else
|
|
LiveExitBlocks.insert(Succ);
|
|
}
|
|
}
|
|
|
|
// Sanity check: amount of dead and live loop blocks should match the total
|
|
// number of blocks in loop.
|
|
assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
|
|
"Malformed block sets?");
|
|
|
|
// Now, all exit blocks that are not marked as live are dead.
|
|
SmallVector<BasicBlock *, 8> ExitBlocks;
|
|
L.getExitBlocks(ExitBlocks);
|
|
for (auto *ExitBlock : ExitBlocks)
|
|
if (!LiveExitBlocks.count(ExitBlock))
|
|
DeadExitBlocks.push_back(ExitBlock);
|
|
|
|
// Whether or not the edge From->To will still be present in graph after the
|
|
// folding.
|
|
auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
|
|
if (!LiveLoopBlocks.count(From))
|
|
return false;
|
|
BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
|
|
return !TheOnlySucc || TheOnlySucc == To;
|
|
};
|
|
|
|
// The loop will not be destroyed if its latch is live.
|
|
DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());
|
|
|
|
// If we are going to delete the current loop completely, no extra analysis
|
|
// is needed.
|
|
if (DeleteCurrentLoop)
|
|
return;
|
|
|
|
// Otherwise, we should check which blocks will still be a part of the
|
|
// current loop after the transform.
|
|
BlocksInLoopAfterFolding.insert(L.getLoopLatch());
|
|
// If the loop is live, then we should compute what blocks are still in
|
|
// loop after all branch folding has been done. A block is in loop if
|
|
// it has a live edge to another block that is in the loop; by definition,
|
|
// latch is in the loop.
|
|
auto BlockIsInLoop = [&](BasicBlock *BB) {
|
|
return any_of(successors(BB), [&](BasicBlock *Succ) {
|
|
return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
|
|
});
|
|
};
|
|
for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
|
|
BasicBlock *BB = *I;
|
|
if (BlockIsInLoop(BB))
|
|
BlocksInLoopAfterFolding.insert(BB);
|
|
}
|
|
|
|
// Sanity check: header must be in loop.
|
|
assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
|
|
"Header not in loop?");
|
|
assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
|
|
"All blocks that stay in loop should be live!");
|
|
}
|
|
|
|
/// Constant-fold terminators of blocks acculumated in FoldCandidates into the
|
|
/// unconditional branches.
|
|
void foldTerminators() {
|
|
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
|
|
|
|
for (BasicBlock *BB : FoldCandidates) {
|
|
assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
|
|
BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
|
|
assert(TheOnlySucc && "Should have one live successor!");
|
|
|
|
LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
|
|
<< " with an unconditional branch to the block "
|
|
<< TheOnlySucc->getName() << "\n");
|
|
|
|
SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
|
|
// Remove all BB's successors except for the live one.
|
|
unsigned TheOnlySuccDuplicates = 0;
|
|
for (auto *Succ : successors(BB))
|
|
if (Succ != TheOnlySucc) {
|
|
DeadSuccessors.insert(Succ);
|
|
// If our successor lies in a different loop, we don't want to remove
|
|
// the one-input Phi because it is a LCSSA Phi.
|
|
bool PreserveLCSSAPhi = !L.contains(Succ);
|
|
Succ->removePredecessor(BB, PreserveLCSSAPhi);
|
|
if (MSSAU)
|
|
MSSAU->removeEdge(BB, Succ);
|
|
} else
|
|
++TheOnlySuccDuplicates;
|
|
|
|
assert(TheOnlySuccDuplicates > 0 && "Should be!");
|
|
// If TheOnlySucc was BB's successor more than once, after transform it
|
|
// will be its successor only once. Remove redundant inputs from
|
|
// TheOnlySucc's Phis.
|
|
bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
|
|
for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
|
|
TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
|
|
if (MSSAU && TheOnlySuccDuplicates > 1)
|
|
MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);
|
|
|
|
IRBuilder<> Builder(BB->getContext());
|
|
Instruction *Term = BB->getTerminator();
|
|
Builder.SetInsertPoint(Term);
|
|
Builder.CreateBr(TheOnlySucc);
|
|
Term->eraseFromParent();
|
|
|
|
for (auto *DeadSucc : DeadSuccessors)
|
|
DTU.deleteEdge(BB, DeadSucc);
|
|
|
|
++NumTerminatorsFolded;
|
|
}
|
|
}
|
|
|
|
public:
|
|
ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
|
|
MemorySSAUpdater *MSSAU)
|
|
: L(L), LI(LI), DT(DT), MSSAU(MSSAU) {}
|
|
bool run() {
|
|
assert(L.getLoopLatch() && "Should be single latch!");
|
|
|
|
// Collect all available information about status of blocks after constant
|
|
// folding.
|
|
analyze();
|
|
|
|
LLVM_DEBUG(dbgs() << "In function " << L.getHeader()->getParent()->getName()
|
|
<< ": ");
|
|
|
|
// Nothing to constant-fold.
|
|
if (FoldCandidates.empty()) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "No constant terminator folding candidates found in loop "
|
|
<< L.getHeader()->getName() << "\n");
|
|
return false;
|
|
}
|
|
|
|
// TODO: Support deletion of the current loop.
|
|
if (DeleteCurrentLoop) {
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "Give up constant terminator folding in loop "
|
|
<< L.getHeader()->getName()
|
|
<< ": we don't currently support deletion of the current loop.\n");
|
|
return false;
|
|
}
|
|
|
|
// TODO: Support deletion of dead loop blocks.
|
|
if (!DeadLoopBlocks.empty()) {
|
|
LLVM_DEBUG(dbgs() << "Give up constant terminator folding in loop "
|
|
<< L.getHeader()->getName()
|
|
<< ": we don't currently"
|
|
" support deletion of dead in-loop blocks.\n");
|
|
return false;
|
|
}
|
|
|
|
// TODO: Support dead loop exits.
|
|
if (!DeadExitBlocks.empty()) {
|
|
LLVM_DEBUG(dbgs() << "Give up constant terminator folding in loop "
|
|
<< L.getHeader()->getName()
|
|
<< ": we don't currently support dead loop exits.\n");
|
|
return false;
|
|
}
|
|
|
|
// TODO: Support blocks that are not dead, but also not in loop after the
|
|
// folding.
|
|
if (BlocksInLoopAfterFolding.size() != L.getNumBlocks()) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Give up constant terminator folding in loop "
|
|
<< L.getHeader()->getName()
|
|
<< ": we don't currently"
|
|
" support blocks that are not dead, but will stop "
|
|
"being a part of the loop after constant-folding.\n");
|
|
return false;
|
|
}
|
|
|
|
// Dump analysis results.
|
|
LLVM_DEBUG(dump());
|
|
|
|
LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
|
|
<< " terminators in loop " << L.getHeader()->getName()
|
|
<< "\n");
|
|
|
|
// Make the actual transforms.
|
|
foldTerminators();
|
|
|
|
#ifndef NDEBUG
|
|
// Make sure that we have preserved all data structures after the transform.
|
|
DT.verify();
|
|
assert(DT.isReachableFromEntry(L.getHeader()));
|
|
LI.verify(DT);
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/// Turn branches and switches with known constant conditions into unconditional
|
|
/// branches.
|
|
static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI,
|
|
MemorySSAUpdater *MSSAU) {
|
|
if (!EnableTermFolding)
|
|
return false;
|
|
|
|
// To keep things simple, only process loops with single latch. We
|
|
// canonicalize most loops to this form. We can support multi-latch if needed.
|
|
if (!L.getLoopLatch())
|
|
return false;
|
|
|
|
ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, MSSAU);
|
|
return BranchFolder.run();
|
|
}
|
|
|
|
static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
|
|
LoopInfo &LI, MemorySSAUpdater *MSSAU) {
|
|
bool Changed = false;
|
|
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
|
|
// Copy blocks into a temporary array to avoid iterator invalidation issues
|
|
// as we remove them.
|
|
SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());
|
|
|
|
for (auto &Block : Blocks) {
|
|
// Attempt to merge blocks in the trivial case. Don't modify blocks which
|
|
// belong to other loops.
|
|
BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
|
|
if (!Succ)
|
|
continue;
|
|
|
|
BasicBlock *Pred = Succ->getSinglePredecessor();
|
|
if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
|
|
continue;
|
|
|
|
// Merge Succ into Pred and delete it.
|
|
MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);
|
|
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
|
|
ScalarEvolution &SE, MemorySSAUpdater *MSSAU) {
|
|
bool Changed = false;
|
|
|
|
// Constant-fold terminators with known constant conditions.
|
|
Changed |= constantFoldTerminators(L, DT, LI, MSSAU);
|
|
|
|
// Eliminate unconditional branches by merging blocks into their predecessors.
|
|
Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU);
|
|
|
|
if (Changed)
|
|
SE.forgetTopmostLoop(&L);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
|
|
LoopStandardAnalysisResults &AR,
|
|
LPMUpdater &) {
|
|
Optional<MemorySSAUpdater> MSSAU;
|
|
if (EnableMSSALoopDependency && AR.MSSA)
|
|
MSSAU = MemorySSAUpdater(AR.MSSA);
|
|
if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE,
|
|
MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
|
|
return PreservedAnalyses::all();
|
|
|
|
return getLoopPassPreservedAnalyses();
|
|
}
|
|
|
|
namespace {
|
|
class LoopSimplifyCFGLegacyPass : public LoopPass {
|
|
public:
|
|
static char ID; // Pass ID, replacement for typeid
|
|
LoopSimplifyCFGLegacyPass() : LoopPass(ID) {
|
|
initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnLoop(Loop *L, LPPassManager &) override {
|
|
if (skipLoop(L))
|
|
return false;
|
|
|
|
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
Optional<MemorySSAUpdater> MSSAU;
|
|
if (EnableMSSALoopDependency) {
|
|
MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
|
|
MSSAU = MemorySSAUpdater(MSSA);
|
|
if (VerifyMemorySSA)
|
|
MSSA->verifyMemorySSA();
|
|
}
|
|
return simplifyLoopCFG(*L, DT, LI, SE,
|
|
MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
if (EnableMSSALoopDependency) {
|
|
AU.addRequired<MemorySSAWrapperPass>();
|
|
AU.addPreserved<MemorySSAWrapperPass>();
|
|
}
|
|
AU.addPreserved<DependenceAnalysisWrapperPass>();
|
|
getLoopAnalysisUsage(AU);
|
|
}
|
|
};
|
|
}
|
|
|
|
char LoopSimplifyCFGLegacyPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
|
|
"Simplify loop CFG", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
|
|
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
|
|
INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
|
|
"Simplify loop CFG", false, false)
|
|
|
|
Pass *llvm::createLoopSimplifyCFGPass() {
|
|
return new LoopSimplifyCFGLegacyPass();
|
|
}
|