Linker might relax adrp + ldr got address loading to adrp + add for local non-preemptible symbols (e.g. hidden/protected symbols in executable). As usually linker doesn't change relocations properly after relaxation, so we have to handle such cases by ourselves. To do that during relocations reading we change LD64 reloc to ADD if instruction mismatch found and introduce FixRelaxationPass that searches for ADRP+ADD pairs and after performing some checks we're replacing ADRP target symbol to already fixed ADDs one. Vladislav Khmelevsky, Advanced Software Technology Lab, Huawei Differential Revision: https://reviews.llvm.org/D138097
1173 lines
41 KiB
C++
1173 lines
41 KiB
C++
//===- bolt/Target/AArch64/AArch64MCPlusBuilder.cpp -----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file provides AArch64-specific MCPlus builder.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MCTargetDesc/AArch64AddressingModes.h"
|
|
#include "MCTargetDesc/AArch64MCExpr.h"
|
|
#include "MCTargetDesc/AArch64MCTargetDesc.h"
|
|
#include "Utils/AArch64BaseInfo.h"
|
|
#include "bolt/Core/MCPlusBuilder.h"
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/MC/MCInstrInfo.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
#define DEBUG_TYPE "mcplus"
|
|
|
|
using namespace llvm;
|
|
using namespace bolt;
|
|
|
|
namespace {
|
|
|
|
class AArch64MCPlusBuilder : public MCPlusBuilder {
|
|
public:
|
|
AArch64MCPlusBuilder(const MCInstrAnalysis *Analysis, const MCInstrInfo *Info,
|
|
const MCRegisterInfo *RegInfo)
|
|
: MCPlusBuilder(Analysis, Info, RegInfo) {}
|
|
|
|
bool equals(const MCTargetExpr &A, const MCTargetExpr &B,
|
|
CompFuncTy Comp) const override {
|
|
const auto &AArch64ExprA = cast<AArch64MCExpr>(A);
|
|
const auto &AArch64ExprB = cast<AArch64MCExpr>(B);
|
|
if (AArch64ExprA.getKind() != AArch64ExprB.getKind())
|
|
return false;
|
|
|
|
return MCPlusBuilder::equals(*AArch64ExprA.getSubExpr(),
|
|
*AArch64ExprB.getSubExpr(), Comp);
|
|
}
|
|
|
|
bool hasEVEXEncoding(const MCInst &) const override { return false; }
|
|
|
|
bool isMacroOpFusionPair(ArrayRef<MCInst> Insts) const override {
|
|
return false;
|
|
}
|
|
|
|
bool shortenInstruction(MCInst &, const MCSubtargetInfo &) const override {
|
|
return false;
|
|
}
|
|
|
|
bool isADRP(const MCInst &Inst) const override {
|
|
return Inst.getOpcode() == AArch64::ADRP;
|
|
}
|
|
|
|
bool isADR(const MCInst &Inst) const override {
|
|
return Inst.getOpcode() == AArch64::ADR;
|
|
}
|
|
|
|
bool isAddXri(const MCInst &Inst) const {
|
|
return Inst.getOpcode() == AArch64::ADDXri;
|
|
}
|
|
|
|
void getADRReg(const MCInst &Inst, MCPhysReg &RegName) const override {
|
|
assert((isADR(Inst) || isADRP(Inst)) && "Not an ADR instruction");
|
|
assert(MCPlus::getNumPrimeOperands(Inst) != 0 &&
|
|
"No operands for ADR instruction");
|
|
assert(Inst.getOperand(0).isReg() &&
|
|
"Unexpected operand in ADR instruction");
|
|
RegName = Inst.getOperand(0).getReg();
|
|
}
|
|
|
|
bool isTB(const MCInst &Inst) const {
|
|
return (Inst.getOpcode() == AArch64::TBNZW ||
|
|
Inst.getOpcode() == AArch64::TBNZX ||
|
|
Inst.getOpcode() == AArch64::TBZW ||
|
|
Inst.getOpcode() == AArch64::TBZX);
|
|
}
|
|
|
|
bool isCB(const MCInst &Inst) const {
|
|
return (Inst.getOpcode() == AArch64::CBNZW ||
|
|
Inst.getOpcode() == AArch64::CBNZX ||
|
|
Inst.getOpcode() == AArch64::CBZW ||
|
|
Inst.getOpcode() == AArch64::CBZX);
|
|
}
|
|
|
|
bool isMOVW(const MCInst &Inst) const {
|
|
return (Inst.getOpcode() == AArch64::MOVKWi ||
|
|
Inst.getOpcode() == AArch64::MOVKXi ||
|
|
Inst.getOpcode() == AArch64::MOVNWi ||
|
|
Inst.getOpcode() == AArch64::MOVNXi ||
|
|
Inst.getOpcode() == AArch64::MOVZXi ||
|
|
Inst.getOpcode() == AArch64::MOVZWi);
|
|
}
|
|
|
|
bool isADD(const MCInst &Inst) const {
|
|
return (Inst.getOpcode() == AArch64::ADDSWri ||
|
|
Inst.getOpcode() == AArch64::ADDSWrr ||
|
|
Inst.getOpcode() == AArch64::ADDSWrs ||
|
|
Inst.getOpcode() == AArch64::ADDSWrx ||
|
|
Inst.getOpcode() == AArch64::ADDSXri ||
|
|
Inst.getOpcode() == AArch64::ADDSXrr ||
|
|
Inst.getOpcode() == AArch64::ADDSXrs ||
|
|
Inst.getOpcode() == AArch64::ADDSXrx ||
|
|
Inst.getOpcode() == AArch64::ADDSXrx64 ||
|
|
Inst.getOpcode() == AArch64::ADDWri ||
|
|
Inst.getOpcode() == AArch64::ADDWrr ||
|
|
Inst.getOpcode() == AArch64::ADDWrs ||
|
|
Inst.getOpcode() == AArch64::ADDWrx ||
|
|
Inst.getOpcode() == AArch64::ADDXri ||
|
|
Inst.getOpcode() == AArch64::ADDXrr ||
|
|
Inst.getOpcode() == AArch64::ADDXrs ||
|
|
Inst.getOpcode() == AArch64::ADDXrx ||
|
|
Inst.getOpcode() == AArch64::ADDXrx64);
|
|
}
|
|
|
|
bool isLDRB(const MCInst &Inst) const {
|
|
return (Inst.getOpcode() == AArch64::LDRBBpost ||
|
|
Inst.getOpcode() == AArch64::LDRBBpre ||
|
|
Inst.getOpcode() == AArch64::LDRBBroW ||
|
|
Inst.getOpcode() == AArch64::LDRBBroX ||
|
|
Inst.getOpcode() == AArch64::LDRBBui ||
|
|
Inst.getOpcode() == AArch64::LDRSBWpost ||
|
|
Inst.getOpcode() == AArch64::LDRSBWpre ||
|
|
Inst.getOpcode() == AArch64::LDRSBWroW ||
|
|
Inst.getOpcode() == AArch64::LDRSBWroX ||
|
|
Inst.getOpcode() == AArch64::LDRSBWui ||
|
|
Inst.getOpcode() == AArch64::LDRSBXpost ||
|
|
Inst.getOpcode() == AArch64::LDRSBXpre ||
|
|
Inst.getOpcode() == AArch64::LDRSBXroW ||
|
|
Inst.getOpcode() == AArch64::LDRSBXroX ||
|
|
Inst.getOpcode() == AArch64::LDRSBXui);
|
|
}
|
|
|
|
bool isLDRH(const MCInst &Inst) const {
|
|
return (Inst.getOpcode() == AArch64::LDRHHpost ||
|
|
Inst.getOpcode() == AArch64::LDRHHpre ||
|
|
Inst.getOpcode() == AArch64::LDRHHroW ||
|
|
Inst.getOpcode() == AArch64::LDRHHroX ||
|
|
Inst.getOpcode() == AArch64::LDRHHui ||
|
|
Inst.getOpcode() == AArch64::LDRSHWpost ||
|
|
Inst.getOpcode() == AArch64::LDRSHWpre ||
|
|
Inst.getOpcode() == AArch64::LDRSHWroW ||
|
|
Inst.getOpcode() == AArch64::LDRSHWroX ||
|
|
Inst.getOpcode() == AArch64::LDRSHWui ||
|
|
Inst.getOpcode() == AArch64::LDRSHXpost ||
|
|
Inst.getOpcode() == AArch64::LDRSHXpre ||
|
|
Inst.getOpcode() == AArch64::LDRSHXroW ||
|
|
Inst.getOpcode() == AArch64::LDRSHXroX ||
|
|
Inst.getOpcode() == AArch64::LDRSHXui);
|
|
}
|
|
|
|
bool isLDRW(const MCInst &Inst) const {
|
|
return (Inst.getOpcode() == AArch64::LDRWpost ||
|
|
Inst.getOpcode() == AArch64::LDRWpre ||
|
|
Inst.getOpcode() == AArch64::LDRWroW ||
|
|
Inst.getOpcode() == AArch64::LDRWroX ||
|
|
Inst.getOpcode() == AArch64::LDRWui);
|
|
}
|
|
|
|
bool isLDRX(const MCInst &Inst) const {
|
|
return (Inst.getOpcode() == AArch64::LDRXpost ||
|
|
Inst.getOpcode() == AArch64::LDRXpre ||
|
|
Inst.getOpcode() == AArch64::LDRXroW ||
|
|
Inst.getOpcode() == AArch64::LDRXroX ||
|
|
Inst.getOpcode() == AArch64::LDRXui);
|
|
}
|
|
|
|
bool isLoad(const MCInst &Inst) const override {
|
|
return isLDRB(Inst) || isLDRH(Inst) || isLDRW(Inst) || isLDRX(Inst);
|
|
}
|
|
|
|
bool isLoadFromStack(const MCInst &Inst) const {
|
|
if (!isLoad(Inst))
|
|
return false;
|
|
const MCInstrDesc &InstInfo = Info->get(Inst.getOpcode());
|
|
unsigned NumDefs = InstInfo.getNumDefs();
|
|
for (unsigned I = NumDefs, E = InstInfo.getNumOperands(); I < E; ++I) {
|
|
const MCOperand &Operand = Inst.getOperand(I);
|
|
if (!Operand.isReg())
|
|
continue;
|
|
unsigned Reg = Operand.getReg();
|
|
if (Reg == AArch64::SP || Reg == AArch64::WSP || Reg == AArch64::FP ||
|
|
Reg == AArch64::W29)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool isRegToRegMove(const MCInst &Inst, MCPhysReg &From,
|
|
MCPhysReg &To) const override {
|
|
if (Inst.getOpcode() != AArch64::ORRXrs)
|
|
return false;
|
|
if (Inst.getOperand(1).getReg() != AArch64::XZR)
|
|
return false;
|
|
if (Inst.getOperand(3).getImm() != 0)
|
|
return false;
|
|
From = Inst.getOperand(2).getReg();
|
|
To = Inst.getOperand(0).getReg();
|
|
return true;
|
|
}
|
|
|
|
bool isIndirectCall(const MCInst &Inst) const override {
|
|
return Inst.getOpcode() == AArch64::BLR;
|
|
}
|
|
|
|
bool hasPCRelOperand(const MCInst &Inst) const override {
|
|
// ADRP is blacklisted and is an exception. Even though it has a
|
|
// PC-relative operand, this operand is not a complete symbol reference
|
|
// and BOLT shouldn't try to process it in isolation.
|
|
if (isADRP(Inst))
|
|
return false;
|
|
|
|
if (isADR(Inst))
|
|
return true;
|
|
|
|
// Look for literal addressing mode (see C1-143 ARM DDI 0487B.a)
|
|
const MCInstrDesc &MCII = Info->get(Inst.getOpcode());
|
|
for (unsigned I = 0, E = MCII.getNumOperands(); I != E; ++I)
|
|
if (MCII.OpInfo[I].OperandType == MCOI::OPERAND_PCREL)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool evaluateADR(const MCInst &Inst, int64_t &Imm,
|
|
const MCExpr **DispExpr) const {
|
|
assert((isADR(Inst) || isADRP(Inst)) && "Not an ADR instruction");
|
|
|
|
const MCOperand &Label = Inst.getOperand(1);
|
|
if (!Label.isImm()) {
|
|
assert(Label.isExpr() && "Unexpected ADR operand");
|
|
assert(DispExpr && "DispExpr must be set");
|
|
*DispExpr = Label.getExpr();
|
|
return false;
|
|
}
|
|
|
|
if (Inst.getOpcode() == AArch64::ADR) {
|
|
Imm = Label.getImm();
|
|
return true;
|
|
}
|
|
Imm = Label.getImm() << 12;
|
|
return true;
|
|
}
|
|
|
|
bool evaluateAArch64MemoryOperand(const MCInst &Inst, int64_t &DispImm,
|
|
const MCExpr **DispExpr = nullptr) const {
|
|
if (isADR(Inst) || isADRP(Inst))
|
|
return evaluateADR(Inst, DispImm, DispExpr);
|
|
|
|
// Literal addressing mode
|
|
const MCInstrDesc &MCII = Info->get(Inst.getOpcode());
|
|
for (unsigned I = 0, E = MCII.getNumOperands(); I != E; ++I) {
|
|
if (MCII.OpInfo[I].OperandType != MCOI::OPERAND_PCREL)
|
|
continue;
|
|
|
|
if (!Inst.getOperand(I).isImm()) {
|
|
assert(Inst.getOperand(I).isExpr() && "Unexpected PCREL operand");
|
|
assert(DispExpr && "DispExpr must be set");
|
|
*DispExpr = Inst.getOperand(I).getExpr();
|
|
return true;
|
|
}
|
|
|
|
DispImm = Inst.getOperand(I).getImm() << 2;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool evaluateMemOperandTarget(const MCInst &Inst, uint64_t &Target,
|
|
uint64_t Address,
|
|
uint64_t Size) const override {
|
|
int64_t DispValue;
|
|
const MCExpr *DispExpr = nullptr;
|
|
if (!evaluateAArch64MemoryOperand(Inst, DispValue, &DispExpr))
|
|
return false;
|
|
|
|
// Make sure it's a well-formed addressing we can statically evaluate.
|
|
if (DispExpr)
|
|
return false;
|
|
|
|
Target = DispValue;
|
|
if (Inst.getOpcode() == AArch64::ADRP)
|
|
Target += Address & ~0xFFFULL;
|
|
else
|
|
Target += Address;
|
|
return true;
|
|
}
|
|
|
|
MCInst::iterator getMemOperandDisp(MCInst &Inst) const override {
|
|
MCInst::iterator OI = Inst.begin();
|
|
if (isADR(Inst) || isADRP(Inst)) {
|
|
assert(MCPlus::getNumPrimeOperands(Inst) >= 2 &&
|
|
"Unexpected number of operands");
|
|
return ++OI;
|
|
}
|
|
const MCInstrDesc &MCII = Info->get(Inst.getOpcode());
|
|
for (unsigned I = 0, E = MCII.getNumOperands(); I != E; ++I) {
|
|
if (MCII.OpInfo[I].OperandType == MCOI::OPERAND_PCREL)
|
|
break;
|
|
++OI;
|
|
}
|
|
assert(OI != Inst.end() && "Literal operand not found");
|
|
return OI;
|
|
}
|
|
|
|
bool replaceMemOperandDisp(MCInst &Inst, MCOperand Operand) const override {
|
|
MCInst::iterator OI = getMemOperandDisp(Inst);
|
|
*OI = Operand;
|
|
return true;
|
|
}
|
|
|
|
const MCExpr *getTargetExprFor(MCInst &Inst, const MCExpr *Expr,
|
|
MCContext &Ctx,
|
|
uint64_t RelType) const override {
|
|
|
|
if (isADR(Inst) || RelType == ELF::R_AARCH64_ADR_PREL_LO21 ||
|
|
RelType == ELF::R_AARCH64_TLSDESC_ADR_PREL21) {
|
|
return AArch64MCExpr::create(Expr, AArch64MCExpr::VK_ABS, Ctx);
|
|
} else if (isADRP(Inst) || RelType == ELF::R_AARCH64_ADR_PREL_PG_HI21 ||
|
|
RelType == ELF::R_AARCH64_ADR_PREL_PG_HI21_NC ||
|
|
RelType == ELF::R_AARCH64_TLSDESC_ADR_PAGE21 ||
|
|
RelType == ELF::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 ||
|
|
RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
|
|
// Never emit a GOT reloc, we handled this in
|
|
// RewriteInstance::readRelocations().
|
|
return AArch64MCExpr::create(Expr, AArch64MCExpr::VK_ABS_PAGE, Ctx);
|
|
} else {
|
|
switch (RelType) {
|
|
case ELF::R_AARCH64_ADD_ABS_LO12_NC:
|
|
case ELF::R_AARCH64_LD64_GOT_LO12_NC:
|
|
case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
|
|
case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
|
|
case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
|
|
case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
|
|
case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
|
|
case ELF::R_AARCH64_TLSDESC_ADD_LO12:
|
|
case ELF::R_AARCH64_TLSDESC_LD64_LO12:
|
|
case ELF::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
|
|
case ELF::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
|
|
return AArch64MCExpr::create(Expr, AArch64MCExpr::VK_LO12, Ctx);
|
|
case ELF::R_AARCH64_MOVW_UABS_G3:
|
|
return AArch64MCExpr::create(Expr, AArch64MCExpr::VK_ABS_G3, Ctx);
|
|
case ELF::R_AARCH64_MOVW_UABS_G2:
|
|
case ELF::R_AARCH64_MOVW_UABS_G2_NC:
|
|
return AArch64MCExpr::create(Expr, AArch64MCExpr::VK_ABS_G2_NC, Ctx);
|
|
case ELF::R_AARCH64_MOVW_UABS_G1:
|
|
case ELF::R_AARCH64_MOVW_UABS_G1_NC:
|
|
return AArch64MCExpr::create(Expr, AArch64MCExpr::VK_ABS_G1_NC, Ctx);
|
|
case ELF::R_AARCH64_MOVW_UABS_G0:
|
|
case ELF::R_AARCH64_MOVW_UABS_G0_NC:
|
|
return AArch64MCExpr::create(Expr, AArch64MCExpr::VK_ABS_G0_NC, Ctx);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return Expr;
|
|
}
|
|
|
|
bool getSymbolRefOperandNum(const MCInst &Inst, unsigned &OpNum) const {
|
|
if (OpNum >= MCPlus::getNumPrimeOperands(Inst))
|
|
return false;
|
|
|
|
// Auto-select correct operand number
|
|
if (OpNum == 0) {
|
|
if (isConditionalBranch(Inst) || isADR(Inst) || isADRP(Inst) ||
|
|
isMOVW(Inst))
|
|
OpNum = 1;
|
|
if (isTB(Inst) || isAddXri(Inst))
|
|
OpNum = 2;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
const MCSymbol *getTargetSymbol(const MCExpr *Expr) const override {
|
|
auto *AArchExpr = dyn_cast<AArch64MCExpr>(Expr);
|
|
if (AArchExpr && AArchExpr->getSubExpr())
|
|
return getTargetSymbol(AArchExpr->getSubExpr());
|
|
|
|
auto *BinExpr = dyn_cast<MCBinaryExpr>(Expr);
|
|
if (BinExpr)
|
|
return getTargetSymbol(BinExpr->getLHS());
|
|
|
|
auto *SymExpr = dyn_cast<MCSymbolRefExpr>(Expr);
|
|
if (SymExpr && SymExpr->getKind() == MCSymbolRefExpr::VK_None)
|
|
return &SymExpr->getSymbol();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
const MCSymbol *getTargetSymbol(const MCInst &Inst,
|
|
unsigned OpNum = 0) const override {
|
|
if (!getSymbolRefOperandNum(Inst, OpNum))
|
|
return nullptr;
|
|
|
|
const MCOperand &Op = Inst.getOperand(OpNum);
|
|
if (!Op.isExpr())
|
|
return nullptr;
|
|
|
|
return getTargetSymbol(Op.getExpr());
|
|
}
|
|
|
|
int64_t getTargetAddend(const MCExpr *Expr) const override {
|
|
auto *AArchExpr = dyn_cast<AArch64MCExpr>(Expr);
|
|
if (AArchExpr && AArchExpr->getSubExpr())
|
|
return getTargetAddend(AArchExpr->getSubExpr());
|
|
|
|
auto *BinExpr = dyn_cast<MCBinaryExpr>(Expr);
|
|
if (BinExpr && BinExpr->getOpcode() == MCBinaryExpr::Add)
|
|
return getTargetAddend(BinExpr->getRHS());
|
|
|
|
auto *ConstExpr = dyn_cast<MCConstantExpr>(Expr);
|
|
if (ConstExpr)
|
|
return ConstExpr->getValue();
|
|
|
|
return 0;
|
|
}
|
|
|
|
int64_t getTargetAddend(const MCInst &Inst,
|
|
unsigned OpNum = 0) const override {
|
|
if (!getSymbolRefOperandNum(Inst, OpNum))
|
|
return 0;
|
|
|
|
const MCOperand &Op = Inst.getOperand(OpNum);
|
|
if (!Op.isExpr())
|
|
return 0;
|
|
|
|
return getTargetAddend(Op.getExpr());
|
|
}
|
|
|
|
bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
|
|
uint64_t &Target) const override {
|
|
size_t OpNum = 0;
|
|
|
|
if (isConditionalBranch(Inst)) {
|
|
assert(MCPlus::getNumPrimeOperands(Inst) >= 2 &&
|
|
"Invalid number of operands");
|
|
OpNum = 1;
|
|
}
|
|
|
|
if (isTB(Inst)) {
|
|
assert(MCPlus::getNumPrimeOperands(Inst) >= 3 &&
|
|
"Invalid number of operands");
|
|
OpNum = 2;
|
|
}
|
|
|
|
if (Info->get(Inst.getOpcode()).OpInfo[OpNum].OperandType !=
|
|
MCOI::OPERAND_PCREL) {
|
|
assert((isIndirectBranch(Inst) || isIndirectCall(Inst)) &&
|
|
"FAILED evaluateBranch");
|
|
return false;
|
|
}
|
|
|
|
int64_t Imm = Inst.getOperand(OpNum).getImm() << 2;
|
|
Target = Addr + Imm;
|
|
return true;
|
|
}
|
|
|
|
bool replaceBranchTarget(MCInst &Inst, const MCSymbol *TBB,
|
|
MCContext *Ctx) const override {
|
|
assert((isCall(Inst) || isBranch(Inst)) && !isIndirectBranch(Inst) &&
|
|
"Invalid instruction");
|
|
assert(MCPlus::getNumPrimeOperands(Inst) >= 1 &&
|
|
"Invalid number of operands");
|
|
MCInst::iterator OI = Inst.begin();
|
|
|
|
if (isConditionalBranch(Inst)) {
|
|
assert(MCPlus::getNumPrimeOperands(Inst) >= 2 &&
|
|
"Invalid number of operands");
|
|
++OI;
|
|
}
|
|
|
|
if (isTB(Inst)) {
|
|
assert(MCPlus::getNumPrimeOperands(Inst) >= 3 &&
|
|
"Invalid number of operands");
|
|
OI = Inst.begin() + 2;
|
|
}
|
|
|
|
*OI = MCOperand::createExpr(
|
|
MCSymbolRefExpr::create(TBB, MCSymbolRefExpr::VK_None, *Ctx));
|
|
return true;
|
|
}
|
|
|
|
/// Matches indirect branch patterns in AArch64 related to a jump table (JT),
|
|
/// helping us to build the complete CFG. A typical indirect branch to
|
|
/// a jump table entry in AArch64 looks like the following:
|
|
///
|
|
/// adrp x1, #-7585792 # Get JT Page location
|
|
/// add x1, x1, #692 # Complement with JT Page offset
|
|
/// ldrh w0, [x1, w0, uxtw #1] # Loads JT entry
|
|
/// adr x1, #12 # Get PC + 12 (end of this BB) used next
|
|
/// add x0, x1, w0, sxth #2 # Finish building branch target
|
|
/// # (entries in JT are relative to the end
|
|
/// # of this BB)
|
|
/// br x0 # Indirect jump instruction
|
|
///
|
|
bool analyzeIndirectBranchFragment(
|
|
const MCInst &Inst,
|
|
DenseMap<const MCInst *, SmallVector<MCInst *, 4>> &UDChain,
|
|
const MCExpr *&JumpTable, int64_t &Offset, int64_t &ScaleValue,
|
|
MCInst *&PCRelBase) const {
|
|
// Expect AArch64 BR
|
|
assert(Inst.getOpcode() == AArch64::BR && "Unexpected opcode");
|
|
|
|
// Match the indirect branch pattern for aarch64
|
|
SmallVector<MCInst *, 4> &UsesRoot = UDChain[&Inst];
|
|
if (UsesRoot.size() == 0 || UsesRoot[0] == nullptr)
|
|
return false;
|
|
|
|
const MCInst *DefAdd = UsesRoot[0];
|
|
|
|
// Now we match an ADD
|
|
if (!isADD(*DefAdd)) {
|
|
// If the address is not broken up in two parts, this is not branching
|
|
// according to a jump table entry. Fail.
|
|
return false;
|
|
}
|
|
if (DefAdd->getOpcode() == AArch64::ADDXri) {
|
|
// This can happen when there is no offset, but a direct jump that was
|
|
// transformed into an indirect one (indirect tail call) :
|
|
// ADRP x2, Perl_re_compiler
|
|
// ADD x2, x2, :lo12:Perl_re_compiler
|
|
// BR x2
|
|
return false;
|
|
}
|
|
if (DefAdd->getOpcode() == AArch64::ADDXrs) {
|
|
// Covers the less common pattern where JT entries are relative to
|
|
// the JT itself (like x86). Seems less efficient since we can't
|
|
// assume the JT is aligned at 4B boundary and thus drop 2 bits from
|
|
// JT values.
|
|
// cde264:
|
|
// adrp x12, #21544960 ; 216a000
|
|
// add x12, x12, #1696 ; 216a6a0 (JT object in .rodata)
|
|
// ldrsw x8, [x12, x8, lsl #2] --> loads e.g. 0xfeb73bd8
|
|
// * add x8, x8, x12 --> = cde278, next block
|
|
// br x8
|
|
// cde278:
|
|
//
|
|
// Parsed as ADDXrs reg:x8 reg:x8 reg:x12 imm:0
|
|
return false;
|
|
}
|
|
assert(DefAdd->getOpcode() == AArch64::ADDXrx &&
|
|
"Failed to match indirect branch!");
|
|
|
|
// Validate ADD operands
|
|
int64_t OperandExtension = DefAdd->getOperand(3).getImm();
|
|
unsigned ShiftVal = AArch64_AM::getArithShiftValue(OperandExtension);
|
|
AArch64_AM::ShiftExtendType ExtendType =
|
|
AArch64_AM::getArithExtendType(OperandExtension);
|
|
if (ShiftVal != 2)
|
|
llvm_unreachable("Failed to match indirect branch! (fragment 2)");
|
|
|
|
if (ExtendType == AArch64_AM::SXTB)
|
|
ScaleValue = 1LL;
|
|
else if (ExtendType == AArch64_AM::SXTH)
|
|
ScaleValue = 2LL;
|
|
else if (ExtendType == AArch64_AM::SXTW)
|
|
ScaleValue = 4LL;
|
|
else
|
|
llvm_unreachable("Failed to match indirect branch! (fragment 3)");
|
|
|
|
// Match an ADR to load base address to be used when addressing JT targets
|
|
SmallVector<MCInst *, 4> &UsesAdd = UDChain[DefAdd];
|
|
if (UsesAdd.size() <= 1 || UsesAdd[1] == nullptr || UsesAdd[2] == nullptr) {
|
|
// This happens when we don't have enough context about this jump table
|
|
// because the jumping code sequence was split in multiple basic blocks.
|
|
// This was observed in the wild in HHVM code (dispatchImpl).
|
|
return false;
|
|
}
|
|
MCInst *DefBaseAddr = UsesAdd[1];
|
|
assert(DefBaseAddr->getOpcode() == AArch64::ADR &&
|
|
"Failed to match indirect branch pattern! (fragment 3)");
|
|
|
|
PCRelBase = DefBaseAddr;
|
|
// Match LOAD to load the jump table (relative) target
|
|
const MCInst *DefLoad = UsesAdd[2];
|
|
assert(isLoad(*DefLoad) &&
|
|
"Failed to match indirect branch load pattern! (1)");
|
|
assert((ScaleValue != 1LL || isLDRB(*DefLoad)) &&
|
|
"Failed to match indirect branch load pattern! (2)");
|
|
assert((ScaleValue != 2LL || isLDRH(*DefLoad)) &&
|
|
"Failed to match indirect branch load pattern! (3)");
|
|
|
|
// Match ADD that calculates the JumpTable Base Address (not the offset)
|
|
SmallVector<MCInst *, 4> &UsesLoad = UDChain[DefLoad];
|
|
const MCInst *DefJTBaseAdd = UsesLoad[1];
|
|
MCPhysReg From, To;
|
|
if (DefJTBaseAdd == nullptr || isLoadFromStack(*DefJTBaseAdd) ||
|
|
isRegToRegMove(*DefJTBaseAdd, From, To)) {
|
|
// Sometimes base address may have been defined in another basic block
|
|
// (hoisted). Return with no jump table info.
|
|
JumpTable = nullptr;
|
|
return true;
|
|
}
|
|
|
|
assert(DefJTBaseAdd->getOpcode() == AArch64::ADDXri &&
|
|
"Failed to match jump table base address pattern! (1)");
|
|
|
|
if (DefJTBaseAdd->getOperand(2).isImm())
|
|
Offset = DefJTBaseAdd->getOperand(2).getImm();
|
|
SmallVector<MCInst *, 4> &UsesJTBaseAdd = UDChain[DefJTBaseAdd];
|
|
const MCInst *DefJTBasePage = UsesJTBaseAdd[1];
|
|
if (DefJTBasePage == nullptr || isLoadFromStack(*DefJTBasePage)) {
|
|
JumpTable = nullptr;
|
|
return true;
|
|
}
|
|
assert(DefJTBasePage->getOpcode() == AArch64::ADRP &&
|
|
"Failed to match jump table base page pattern! (2)");
|
|
if (DefJTBasePage->getOperand(1).isExpr())
|
|
JumpTable = DefJTBasePage->getOperand(1).getExpr();
|
|
return true;
|
|
}
|
|
|
|
DenseMap<const MCInst *, SmallVector<MCInst *, 4>>
|
|
computeLocalUDChain(const MCInst *CurInstr, InstructionIterator Begin,
|
|
InstructionIterator End) const {
|
|
DenseMap<int, MCInst *> RegAliasTable;
|
|
DenseMap<const MCInst *, SmallVector<MCInst *, 4>> Uses;
|
|
|
|
auto addInstrOperands = [&](const MCInst &Instr) {
|
|
// Update Uses table
|
|
for (const MCOperand &Operand : MCPlus::primeOperands(Instr)) {
|
|
if (!Operand.isReg())
|
|
continue;
|
|
unsigned Reg = Operand.getReg();
|
|
MCInst *AliasInst = RegAliasTable[Reg];
|
|
Uses[&Instr].push_back(AliasInst);
|
|
LLVM_DEBUG({
|
|
dbgs() << "Adding reg operand " << Reg << " refs ";
|
|
if (AliasInst != nullptr)
|
|
AliasInst->dump();
|
|
else
|
|
dbgs() << "\n";
|
|
});
|
|
}
|
|
};
|
|
|
|
LLVM_DEBUG(dbgs() << "computeLocalUDChain\n");
|
|
bool TerminatorSeen = false;
|
|
for (auto II = Begin; II != End; ++II) {
|
|
MCInst &Instr = *II;
|
|
// Ignore nops and CFIs
|
|
if (isPseudo(Instr) || isNoop(Instr))
|
|
continue;
|
|
if (TerminatorSeen) {
|
|
RegAliasTable.clear();
|
|
Uses.clear();
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Now updating for:\n ");
|
|
LLVM_DEBUG(Instr.dump());
|
|
addInstrOperands(Instr);
|
|
|
|
BitVector Regs = BitVector(RegInfo->getNumRegs(), false);
|
|
getWrittenRegs(Instr, Regs);
|
|
|
|
// Update register definitions after this point
|
|
for (int Idx : Regs.set_bits()) {
|
|
RegAliasTable[Idx] = &Instr;
|
|
LLVM_DEBUG(dbgs() << "Setting reg " << Idx
|
|
<< " def to current instr.\n");
|
|
}
|
|
|
|
TerminatorSeen = isTerminator(Instr);
|
|
}
|
|
|
|
// Process the last instruction, which is not currently added into the
|
|
// instruction stream
|
|
if (CurInstr)
|
|
addInstrOperands(*CurInstr);
|
|
|
|
return Uses;
|
|
}
|
|
|
|
IndirectBranchType analyzeIndirectBranch(
|
|
MCInst &Instruction, InstructionIterator Begin, InstructionIterator End,
|
|
const unsigned PtrSize, MCInst *&MemLocInstrOut, unsigned &BaseRegNumOut,
|
|
unsigned &IndexRegNumOut, int64_t &DispValueOut,
|
|
const MCExpr *&DispExprOut, MCInst *&PCRelBaseOut) const override {
|
|
MemLocInstrOut = nullptr;
|
|
BaseRegNumOut = AArch64::NoRegister;
|
|
IndexRegNumOut = AArch64::NoRegister;
|
|
DispValueOut = 0;
|
|
DispExprOut = nullptr;
|
|
|
|
// An instruction referencing memory used by jump instruction (directly or
|
|
// via register). This location could be an array of function pointers
|
|
// in case of indirect tail call, or a jump table.
|
|
MCInst *MemLocInstr = nullptr;
|
|
|
|
// Analyze the memory location.
|
|
int64_t ScaleValue, DispValue;
|
|
const MCExpr *DispExpr;
|
|
|
|
DenseMap<const MCInst *, SmallVector<llvm::MCInst *, 4>> UDChain =
|
|
computeLocalUDChain(&Instruction, Begin, End);
|
|
MCInst *PCRelBase;
|
|
if (!analyzeIndirectBranchFragment(Instruction, UDChain, DispExpr,
|
|
DispValue, ScaleValue, PCRelBase))
|
|
return IndirectBranchType::UNKNOWN;
|
|
|
|
MemLocInstrOut = MemLocInstr;
|
|
DispValueOut = DispValue;
|
|
DispExprOut = DispExpr;
|
|
PCRelBaseOut = PCRelBase;
|
|
return IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE;
|
|
}
|
|
|
|
/// Matches PLT entry pattern and returns the associated GOT entry address.
|
|
/// Typical PLT entry looks like the following:
|
|
///
|
|
/// adrp x16, 230000
|
|
/// ldr x17, [x16, #3040]
|
|
/// add x16, x16, #0xbe0
|
|
/// br x17
|
|
///
|
|
uint64_t analyzePLTEntry(MCInst &Instruction, InstructionIterator Begin,
|
|
InstructionIterator End,
|
|
uint64_t BeginPC) const override {
|
|
// Check branch instruction
|
|
MCInst *Branch = &Instruction;
|
|
assert(Branch->getOpcode() == AArch64::BR && "Unexpected opcode");
|
|
|
|
DenseMap<const MCInst *, SmallVector<llvm::MCInst *, 4>> UDChain =
|
|
computeLocalUDChain(Branch, Begin, End);
|
|
|
|
// Match ldr instruction
|
|
SmallVector<MCInst *, 4> &BranchUses = UDChain[Branch];
|
|
if (BranchUses.size() < 1 || BranchUses[0] == nullptr)
|
|
return 0;
|
|
|
|
// Check ldr instruction
|
|
const MCInst *Ldr = BranchUses[0];
|
|
if (Ldr->getOpcode() != AArch64::LDRXui)
|
|
return 0;
|
|
|
|
// Get ldr value
|
|
const unsigned ScaleLdr = 8; // LDRX operates on 8 bytes segments
|
|
assert(Ldr->getOperand(2).isImm() && "Unexpected ldr operand");
|
|
const uint64_t Offset = Ldr->getOperand(2).getImm() * ScaleLdr;
|
|
|
|
// Match adrp instruction
|
|
SmallVector<MCInst *, 4> &LdrUses = UDChain[Ldr];
|
|
if (LdrUses.size() < 2 || LdrUses[1] == nullptr)
|
|
return 0;
|
|
|
|
// Check adrp instruction
|
|
MCInst *Adrp = LdrUses[1];
|
|
if (Adrp->getOpcode() != AArch64::ADRP)
|
|
return 0;
|
|
|
|
// Get adrp instruction PC
|
|
const unsigned InstSize = 4;
|
|
uint64_t AdrpPC = BeginPC;
|
|
for (InstructionIterator It = Begin; It != End; ++It) {
|
|
if (&(*It) == Adrp)
|
|
break;
|
|
AdrpPC += InstSize;
|
|
}
|
|
|
|
// Get adrp value
|
|
uint64_t Base;
|
|
assert(Adrp->getOperand(1).isImm() && "Unexpected adrp operand");
|
|
bool Ret = evaluateMemOperandTarget(*Adrp, Base, AdrpPC, InstSize);
|
|
assert(Ret && "Failed to evaluate adrp");
|
|
(void)Ret;
|
|
|
|
return Base + Offset;
|
|
}
|
|
|
|
unsigned getInvertedBranchOpcode(unsigned Opcode) const {
|
|
switch (Opcode) {
|
|
default:
|
|
llvm_unreachable("Failed to invert branch opcode");
|
|
return Opcode;
|
|
case AArch64::TBZW: return AArch64::TBNZW;
|
|
case AArch64::TBZX: return AArch64::TBNZX;
|
|
case AArch64::TBNZW: return AArch64::TBZW;
|
|
case AArch64::TBNZX: return AArch64::TBZX;
|
|
case AArch64::CBZW: return AArch64::CBNZW;
|
|
case AArch64::CBZX: return AArch64::CBNZX;
|
|
case AArch64::CBNZW: return AArch64::CBZW;
|
|
case AArch64::CBNZX: return AArch64::CBZX;
|
|
}
|
|
}
|
|
|
|
unsigned getCondCode(const MCInst &Inst) const override {
|
|
// AArch64 does not use conditional codes, so we just return the opcode
|
|
// of the conditional branch here.
|
|
return Inst.getOpcode();
|
|
}
|
|
|
|
unsigned getCanonicalBranchCondCode(unsigned Opcode) const override {
|
|
switch (Opcode) {
|
|
default:
|
|
return Opcode;
|
|
case AArch64::TBNZW: return AArch64::TBZW;
|
|
case AArch64::TBNZX: return AArch64::TBZX;
|
|
case AArch64::CBNZW: return AArch64::CBZW;
|
|
case AArch64::CBNZX: return AArch64::CBZX;
|
|
}
|
|
}
|
|
|
|
bool reverseBranchCondition(MCInst &Inst, const MCSymbol *TBB,
|
|
MCContext *Ctx) const override {
|
|
if (isTB(Inst) || isCB(Inst)) {
|
|
Inst.setOpcode(getInvertedBranchOpcode(Inst.getOpcode()));
|
|
assert(Inst.getOpcode() != 0 && "Invalid branch instruction");
|
|
} else if (Inst.getOpcode() == AArch64::Bcc) {
|
|
Inst.getOperand(0).setImm(AArch64CC::getInvertedCondCode(
|
|
static_cast<AArch64CC::CondCode>(Inst.getOperand(0).getImm())));
|
|
assert(Inst.getOperand(0).getImm() != AArch64CC::AL &&
|
|
Inst.getOperand(0).getImm() != AArch64CC::NV &&
|
|
"Can't reverse ALWAYS cond code");
|
|
} else {
|
|
LLVM_DEBUG(Inst.dump());
|
|
llvm_unreachable("Unrecognized branch instruction");
|
|
}
|
|
return replaceBranchTarget(Inst, TBB, Ctx);
|
|
}
|
|
|
|
int getPCRelEncodingSize(const MCInst &Inst) const override {
|
|
switch (Inst.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Failed to get pcrel encoding size");
|
|
return 0;
|
|
case AArch64::TBZW: return 16;
|
|
case AArch64::TBZX: return 16;
|
|
case AArch64::TBNZW: return 16;
|
|
case AArch64::TBNZX: return 16;
|
|
case AArch64::CBZW: return 21;
|
|
case AArch64::CBZX: return 21;
|
|
case AArch64::CBNZW: return 21;
|
|
case AArch64::CBNZX: return 21;
|
|
case AArch64::B: return 28;
|
|
case AArch64::BL: return 28;
|
|
case AArch64::Bcc: return 21;
|
|
}
|
|
}
|
|
|
|
int getShortJmpEncodingSize() const override { return 33; }
|
|
|
|
int getUncondBranchEncodingSize() const override { return 28; }
|
|
|
|
bool createTailCall(MCInst &Inst, const MCSymbol *Target,
|
|
MCContext *Ctx) override {
|
|
Inst.setOpcode(AArch64::B);
|
|
Inst.addOperand(MCOperand::createExpr(getTargetExprFor(
|
|
Inst, MCSymbolRefExpr::create(Target, MCSymbolRefExpr::VK_None, *Ctx),
|
|
*Ctx, 0)));
|
|
setTailCall(Inst);
|
|
return true;
|
|
}
|
|
|
|
void createLongTailCall(InstructionListType &Seq, const MCSymbol *Target,
|
|
MCContext *Ctx) override {
|
|
createShortJmp(Seq, Target, Ctx, /*IsTailCall*/ true);
|
|
}
|
|
|
|
bool createTrap(MCInst &Inst) const override {
|
|
Inst.clear();
|
|
Inst.setOpcode(AArch64::BRK);
|
|
Inst.addOperand(MCOperand::createImm(1));
|
|
return true;
|
|
}
|
|
|
|
bool convertJmpToTailCall(MCInst &Inst) override {
|
|
setTailCall(Inst);
|
|
return true;
|
|
}
|
|
|
|
bool convertTailCallToJmp(MCInst &Inst) override {
|
|
removeAnnotation(Inst, MCPlus::MCAnnotation::kTailCall);
|
|
clearOffset(Inst);
|
|
if (getConditionalTailCall(Inst))
|
|
unsetConditionalTailCall(Inst);
|
|
return true;
|
|
}
|
|
|
|
bool lowerTailCall(MCInst &Inst) override {
|
|
removeAnnotation(Inst, MCPlus::MCAnnotation::kTailCall);
|
|
if (getConditionalTailCall(Inst))
|
|
unsetConditionalTailCall(Inst);
|
|
return true;
|
|
}
|
|
|
|
bool isNoop(const MCInst &Inst) const override {
|
|
return Inst.getOpcode() == AArch64::HINT &&
|
|
Inst.getOperand(0).getImm() == 0;
|
|
}
|
|
|
|
bool createNoop(MCInst &Inst) const override {
|
|
Inst.setOpcode(AArch64::HINT);
|
|
Inst.clear();
|
|
Inst.addOperand(MCOperand::createImm(0));
|
|
return true;
|
|
}
|
|
|
|
bool isStore(const MCInst &Inst) const override { return false; }
|
|
|
|
bool analyzeBranch(InstructionIterator Begin, InstructionIterator End,
|
|
const MCSymbol *&TBB, const MCSymbol *&FBB,
|
|
MCInst *&CondBranch,
|
|
MCInst *&UncondBranch) const override {
|
|
auto I = End;
|
|
|
|
while (I != Begin) {
|
|
--I;
|
|
|
|
// Ignore nops and CFIs
|
|
if (isPseudo(*I) || isNoop(*I))
|
|
continue;
|
|
|
|
// Stop when we find the first non-terminator
|
|
if (!isTerminator(*I) || isTailCall(*I) || !isBranch(*I))
|
|
break;
|
|
|
|
// Handle unconditional branches.
|
|
if (isUnconditionalBranch(*I)) {
|
|
// If any code was seen after this unconditional branch, we've seen
|
|
// unreachable code. Ignore them.
|
|
CondBranch = nullptr;
|
|
UncondBranch = &*I;
|
|
const MCSymbol *Sym = getTargetSymbol(*I);
|
|
assert(Sym != nullptr &&
|
|
"Couldn't extract BB symbol from jump operand");
|
|
TBB = Sym;
|
|
continue;
|
|
}
|
|
|
|
// Handle conditional branches and ignore indirect branches
|
|
if (isIndirectBranch(*I))
|
|
return false;
|
|
|
|
if (CondBranch == nullptr) {
|
|
const MCSymbol *TargetBB = getTargetSymbol(*I);
|
|
if (TargetBB == nullptr) {
|
|
// Unrecognized branch target
|
|
return false;
|
|
}
|
|
FBB = TBB;
|
|
TBB = TargetBB;
|
|
CondBranch = &*I;
|
|
continue;
|
|
}
|
|
|
|
llvm_unreachable("multiple conditional branches in one BB");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void createLongJmp(InstructionListType &Seq, const MCSymbol *Target,
|
|
MCContext *Ctx, bool IsTailCall) override {
|
|
// ip0 (r16) is reserved to the linker (refer to 5.3.1.1 of "Procedure Call
|
|
// Standard for the ARM 64-bit Architecture (AArch64)".
|
|
// The sequence of instructions we create here is the following:
|
|
// movz ip0, #:abs_g3:<addr>
|
|
// movk ip0, #:abs_g2_nc:<addr>
|
|
// movk ip0, #:abs_g1_nc:<addr>
|
|
// movk ip0, #:abs_g0_nc:<addr>
|
|
// br ip0
|
|
MCInst Inst;
|
|
Inst.setOpcode(AArch64::MOVZXi);
|
|
Inst.addOperand(MCOperand::createReg(AArch64::X16));
|
|
Inst.addOperand(MCOperand::createExpr(AArch64MCExpr::create(
|
|
MCSymbolRefExpr::create(Target, MCSymbolRefExpr::VK_None, *Ctx),
|
|
AArch64MCExpr::VK_ABS_G3, *Ctx)));
|
|
Inst.addOperand(MCOperand::createImm(0x30));
|
|
Seq.emplace_back(Inst);
|
|
|
|
Inst.clear();
|
|
Inst.setOpcode(AArch64::MOVKXi);
|
|
Inst.addOperand(MCOperand::createReg(AArch64::X16));
|
|
Inst.addOperand(MCOperand::createReg(AArch64::X16));
|
|
Inst.addOperand(MCOperand::createExpr(AArch64MCExpr::create(
|
|
MCSymbolRefExpr::create(Target, MCSymbolRefExpr::VK_None, *Ctx),
|
|
AArch64MCExpr::VK_ABS_G2_NC, *Ctx)));
|
|
Inst.addOperand(MCOperand::createImm(0x20));
|
|
Seq.emplace_back(Inst);
|
|
|
|
Inst.clear();
|
|
Inst.setOpcode(AArch64::MOVKXi);
|
|
Inst.addOperand(MCOperand::createReg(AArch64::X16));
|
|
Inst.addOperand(MCOperand::createReg(AArch64::X16));
|
|
Inst.addOperand(MCOperand::createExpr(AArch64MCExpr::create(
|
|
MCSymbolRefExpr::create(Target, MCSymbolRefExpr::VK_None, *Ctx),
|
|
AArch64MCExpr::VK_ABS_G1_NC, *Ctx)));
|
|
Inst.addOperand(MCOperand::createImm(0x10));
|
|
Seq.emplace_back(Inst);
|
|
|
|
Inst.clear();
|
|
Inst.setOpcode(AArch64::MOVKXi);
|
|
Inst.addOperand(MCOperand::createReg(AArch64::X16));
|
|
Inst.addOperand(MCOperand::createReg(AArch64::X16));
|
|
Inst.addOperand(MCOperand::createExpr(AArch64MCExpr::create(
|
|
MCSymbolRefExpr::create(Target, MCSymbolRefExpr::VK_None, *Ctx),
|
|
AArch64MCExpr::VK_ABS_G0_NC, *Ctx)));
|
|
Inst.addOperand(MCOperand::createImm(0));
|
|
Seq.emplace_back(Inst);
|
|
|
|
Inst.clear();
|
|
Inst.setOpcode(AArch64::BR);
|
|
Inst.addOperand(MCOperand::createReg(AArch64::X16));
|
|
if (IsTailCall)
|
|
setTailCall(Inst);
|
|
Seq.emplace_back(Inst);
|
|
}
|
|
|
|
void createShortJmp(InstructionListType &Seq, const MCSymbol *Target,
|
|
MCContext *Ctx, bool IsTailCall) override {
|
|
// ip0 (r16) is reserved to the linker (refer to 5.3.1.1 of "Procedure Call
|
|
// Standard for the ARM 64-bit Architecture (AArch64)".
|
|
// The sequence of instructions we create here is the following:
|
|
// adrp ip0, imm
|
|
// add ip0, ip0, imm
|
|
// br ip0
|
|
MCPhysReg Reg = AArch64::X16;
|
|
InstructionListType Insts = materializeAddress(Target, Ctx, Reg);
|
|
Insts.emplace_back();
|
|
MCInst &Inst = Insts.back();
|
|
Inst.clear();
|
|
Inst.setOpcode(AArch64::BR);
|
|
Inst.addOperand(MCOperand::createReg(Reg));
|
|
if (IsTailCall)
|
|
setTailCall(Inst);
|
|
Seq.swap(Insts);
|
|
}
|
|
|
|
/// Matching pattern here is
|
|
///
|
|
/// ADRP x16, imm
|
|
/// ADD x16, x16, imm
|
|
/// BR x16
|
|
///
|
|
uint64_t matchLinkerVeneer(InstructionIterator Begin, InstructionIterator End,
|
|
uint64_t Address, const MCInst &CurInst,
|
|
MCInst *&TargetHiBits, MCInst *&TargetLowBits,
|
|
uint64_t &Target) const override {
|
|
if (CurInst.getOpcode() != AArch64::BR || !CurInst.getOperand(0).isReg() ||
|
|
CurInst.getOperand(0).getReg() != AArch64::X16)
|
|
return 0;
|
|
|
|
auto I = End;
|
|
if (I == Begin)
|
|
return 0;
|
|
|
|
--I;
|
|
Address -= 4;
|
|
if (I == Begin || I->getOpcode() != AArch64::ADDXri ||
|
|
MCPlus::getNumPrimeOperands(*I) < 3 || !I->getOperand(0).isReg() ||
|
|
!I->getOperand(1).isReg() ||
|
|
I->getOperand(0).getReg() != AArch64::X16 ||
|
|
I->getOperand(1).getReg() != AArch64::X16 || !I->getOperand(2).isImm())
|
|
return 0;
|
|
TargetLowBits = &*I;
|
|
uint64_t Addr = I->getOperand(2).getImm() & 0xFFF;
|
|
|
|
--I;
|
|
Address -= 4;
|
|
if (I->getOpcode() != AArch64::ADRP ||
|
|
MCPlus::getNumPrimeOperands(*I) < 2 || !I->getOperand(0).isReg() ||
|
|
!I->getOperand(1).isImm() || I->getOperand(0).getReg() != AArch64::X16)
|
|
return 0;
|
|
TargetHiBits = &*I;
|
|
Addr |= (Address + ((int64_t)I->getOperand(1).getImm() << 12)) &
|
|
0xFFFFFFFFFFFFF000ULL;
|
|
Target = Addr;
|
|
return 3;
|
|
}
|
|
|
|
bool matchAdrpAddPair(const MCInst &Adrp, const MCInst &Add) const override {
|
|
if (!isADRP(Adrp) || !isAddXri(Add))
|
|
return false;
|
|
|
|
assert(Adrp.getOperand(0).isReg() &&
|
|
"Unexpected operand in ADRP instruction");
|
|
MCPhysReg AdrpReg = Adrp.getOperand(0).getReg();
|
|
assert(Add.getOperand(1).isReg() &&
|
|
"Unexpected operand in ADDXri instruction");
|
|
MCPhysReg AddReg = Add.getOperand(1).getReg();
|
|
return AdrpReg == AddReg;
|
|
}
|
|
|
|
bool replaceImmWithSymbolRef(MCInst &Inst, const MCSymbol *Symbol,
|
|
int64_t Addend, MCContext *Ctx, int64_t &Value,
|
|
uint64_t RelType) const override {
|
|
unsigned ImmOpNo = -1U;
|
|
for (unsigned Index = 0; Index < MCPlus::getNumPrimeOperands(Inst);
|
|
++Index) {
|
|
if (Inst.getOperand(Index).isImm()) {
|
|
ImmOpNo = Index;
|
|
break;
|
|
}
|
|
}
|
|
if (ImmOpNo == -1U)
|
|
return false;
|
|
|
|
Value = Inst.getOperand(ImmOpNo).getImm();
|
|
|
|
setOperandToSymbolRef(Inst, ImmOpNo, Symbol, Addend, Ctx, RelType);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool createUncondBranch(MCInst &Inst, const MCSymbol *TBB,
|
|
MCContext *Ctx) const override {
|
|
Inst.setOpcode(AArch64::B);
|
|
Inst.clear();
|
|
Inst.addOperand(MCOperand::createExpr(getTargetExprFor(
|
|
Inst, MCSymbolRefExpr::create(TBB, MCSymbolRefExpr::VK_None, *Ctx),
|
|
*Ctx, 0)));
|
|
return true;
|
|
}
|
|
|
|
bool isMoveMem2Reg(const MCInst &Inst) const override { return false; }
|
|
|
|
bool isLeave(const MCInst &Inst) const override { return false; }
|
|
|
|
bool isPop(const MCInst &Inst) const override { return false; }
|
|
|
|
bool isPrefix(const MCInst &Inst) const override { return false; }
|
|
|
|
bool createReturn(MCInst &Inst) const override {
|
|
Inst.setOpcode(AArch64::RET);
|
|
Inst.clear();
|
|
Inst.addOperand(MCOperand::createReg(AArch64::LR));
|
|
return true;
|
|
}
|
|
|
|
InstructionListType materializeAddress(const MCSymbol *Target, MCContext *Ctx,
|
|
MCPhysReg RegName,
|
|
int64_t Addend = 0) const override {
|
|
// Get page-aligned address and add page offset
|
|
InstructionListType Insts(2);
|
|
Insts[0].setOpcode(AArch64::ADRP);
|
|
Insts[0].clear();
|
|
Insts[0].addOperand(MCOperand::createReg(RegName));
|
|
Insts[0].addOperand(MCOperand::createImm(0));
|
|
setOperandToSymbolRef(Insts[0], /* OpNum */ 1, Target, Addend, Ctx,
|
|
ELF::R_AARCH64_NONE);
|
|
Insts[1].setOpcode(AArch64::ADDXri);
|
|
Insts[1].clear();
|
|
Insts[1].addOperand(MCOperand::createReg(RegName));
|
|
Insts[1].addOperand(MCOperand::createReg(RegName));
|
|
Insts[1].addOperand(MCOperand::createImm(0));
|
|
Insts[1].addOperand(MCOperand::createImm(0));
|
|
setOperandToSymbolRef(Insts[1], /* OpNum */ 2, Target, Addend, Ctx,
|
|
ELF::R_AARCH64_ADD_ABS_LO12_NC);
|
|
return Insts;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
namespace llvm {
|
|
namespace bolt {
|
|
|
|
MCPlusBuilder *createAArch64MCPlusBuilder(const MCInstrAnalysis *Analysis,
|
|
const MCInstrInfo *Info,
|
|
const MCRegisterInfo *RegInfo) {
|
|
return new AArch64MCPlusBuilder(Analysis, Info, RegInfo);
|
|
}
|
|
|
|
} // namespace bolt
|
|
} // namespace llvm
|