Files
clang-p2996/clang/lib/Analysis/FlowSensitive/Transfer.cpp
Yitzhak Mandelbaum 01ccf7b3ce Revert "Revert "[clang][dataflow] Only model struct fields that are used in the function being analyzed.""
This reverts commit 2b1a517a92. It's a fix forward
with two memory errors fixed, one of which was the cause of the build breakage
in the buildbots.

Original message:

Previously, the model for structs modeled all fields in a struct when
`createValue` was called for that type. This patch adds a prepass on the
function under analysis to discover the fields referenced in the scope and then
limits modeling to only those fields. This reduces wasted memory usage
(modeling unused fields) which can be important for programs that use large
structs.

Note: This patch obviates the need for https://reviews.llvm.org/D123032.
2023-01-09 19:32:10 +00:00

817 lines
28 KiB
C++

//===-- Transfer.cpp --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines transfer functions that evaluate program statements and
// update an environment accordingly.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/FlowSensitive/Transfer.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Analysis/FlowSensitive/ControlFlowContext.h"
#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
#include "clang/Analysis/FlowSensitive/NoopAnalysis.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/OperatorKinds.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <memory>
#include <tuple>
namespace clang {
namespace dataflow {
static BoolValue &evaluateBooleanEquality(const Expr &LHS, const Expr &RHS,
Environment &Env) {
if (auto *LHSValue =
dyn_cast_or_null<BoolValue>(Env.getValue(LHS, SkipPast::Reference)))
if (auto *RHSValue =
dyn_cast_or_null<BoolValue>(Env.getValue(RHS, SkipPast::Reference)))
return Env.makeIff(*LHSValue, *RHSValue);
return Env.makeAtomicBoolValue();
}
// Functionally updates `V` such that any instances of `TopBool` are replaced
// with fresh atomic bools. Note: This implementation assumes that `B` is a
// tree; if `B` is a DAG, it will lose any sharing between subvalues that was
// present in the original .
static BoolValue &unpackValue(BoolValue &V, Environment &Env);
template <typename Derived, typename M>
BoolValue &unpackBinaryBoolValue(Environment &Env, BoolValue &B, M build) {
auto &V = *cast<Derived>(&B);
BoolValue &Left = V.getLeftSubValue();
BoolValue &Right = V.getRightSubValue();
BoolValue &ULeft = unpackValue(Left, Env);
BoolValue &URight = unpackValue(Right, Env);
if (&ULeft == &Left && &URight == &Right)
return V;
return (Env.*build)(ULeft, URight);
}
static BoolValue &unpackValue(BoolValue &V, Environment &Env) {
switch (V.getKind()) {
case Value::Kind::Integer:
case Value::Kind::Reference:
case Value::Kind::Pointer:
case Value::Kind::Struct:
llvm_unreachable("BoolValue cannot have any of these kinds.");
case Value::Kind::AtomicBool:
return V;
case Value::Kind::TopBool:
// Unpack `TopBool` into a fresh atomic bool.
return Env.makeAtomicBoolValue();
case Value::Kind::Negation: {
auto &N = *cast<NegationValue>(&V);
BoolValue &Sub = N.getSubVal();
BoolValue &USub = unpackValue(Sub, Env);
if (&USub == &Sub)
return V;
return Env.makeNot(USub);
}
case Value::Kind::Conjunction:
return unpackBinaryBoolValue<ConjunctionValue>(Env, V,
&Environment::makeAnd);
case Value::Kind::Disjunction:
return unpackBinaryBoolValue<DisjunctionValue>(Env, V,
&Environment::makeOr);
case Value::Kind::Implication:
return unpackBinaryBoolValue<ImplicationValue>(
Env, V, &Environment::makeImplication);
case Value::Kind::Biconditional:
return unpackBinaryBoolValue<BiconditionalValue>(Env, V,
&Environment::makeIff);
}
llvm_unreachable("All reachable cases in switch return");
}
// Unpacks the value (if any) associated with `E` and updates `E` to the new
// value, if any unpacking occured.
static Value *maybeUnpackLValueExpr(const Expr &E, Environment &Env) {
auto *Loc = Env.getStorageLocation(E, SkipPast::Reference);
if (Loc == nullptr)
return nullptr;
auto *Val = Env.getValue(*Loc);
auto *B = dyn_cast_or_null<BoolValue>(Val);
if (B == nullptr)
return Val;
auto &UnpackedVal = unpackValue(*B, Env);
if (&UnpackedVal == Val)
return Val;
Env.setValue(*Loc, UnpackedVal);
return &UnpackedVal;
}
class TransferVisitor : public ConstStmtVisitor<TransferVisitor> {
public:
TransferVisitor(const StmtToEnvMap &StmtToEnv, Environment &Env,
TransferOptions Options)
: StmtToEnv(StmtToEnv), Env(Env), Options(Options) {}
void VisitBinaryOperator(const BinaryOperator *S) {
const Expr *LHS = S->getLHS();
assert(LHS != nullptr);
const Expr *RHS = S->getRHS();
assert(RHS != nullptr);
switch (S->getOpcode()) {
case BO_Assign: {
auto *LHSLoc = Env.getStorageLocation(*LHS, SkipPast::Reference);
if (LHSLoc == nullptr)
break;
auto *RHSVal = Env.getValue(*RHS, SkipPast::Reference);
if (RHSVal == nullptr)
break;
// Assign a value to the storage location of the left-hand side.
Env.setValue(*LHSLoc, *RHSVal);
// Assign a storage location for the whole expression.
Env.setStorageLocation(*S, *LHSLoc);
break;
}
case BO_LAnd:
case BO_LOr: {
BoolValue &LHSVal = getLogicOperatorSubExprValue(*LHS);
BoolValue &RHSVal = getLogicOperatorSubExprValue(*RHS);
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
if (S->getOpcode() == BO_LAnd)
Env.setValue(Loc, Env.makeAnd(LHSVal, RHSVal));
else
Env.setValue(Loc, Env.makeOr(LHSVal, RHSVal));
break;
}
case BO_NE:
case BO_EQ: {
auto &LHSEqRHSValue = evaluateBooleanEquality(*LHS, *RHS, Env);
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
Env.setValue(Loc, S->getOpcode() == BO_EQ ? LHSEqRHSValue
: Env.makeNot(LHSEqRHSValue));
break;
}
case BO_Comma: {
if (auto *Loc = Env.getStorageLocation(*RHS, SkipPast::None))
Env.setStorageLocation(*S, *Loc);
break;
}
default:
break;
}
}
void VisitDeclRefExpr(const DeclRefExpr *S) {
const ValueDecl *VD = S->getDecl();
assert(VD != nullptr);
auto *DeclLoc = Env.getStorageLocation(*VD, SkipPast::None);
if (DeclLoc == nullptr)
return;
if (VD->getType()->isReferenceType()) {
Env.setStorageLocation(*S, *DeclLoc);
} else {
auto &Loc = Env.createStorageLocation(*S);
auto &Val = Env.takeOwnership(std::make_unique<ReferenceValue>(*DeclLoc));
Env.setStorageLocation(*S, Loc);
Env.setValue(Loc, Val);
}
}
void VisitDeclStmt(const DeclStmt *S) {
// Group decls are converted into single decls in the CFG so the cast below
// is safe.
const auto &D = *cast<VarDecl>(S->getSingleDecl());
// Static local vars are already initialized in `Environment`.
if (D.hasGlobalStorage())
return;
// The storage location for `D` could have been created earlier, before the
// variable's declaration statement (for example, in the case of
// BindingDecls).
auto *MaybeLoc = Env.getStorageLocation(D, SkipPast::None);
if (MaybeLoc == nullptr) {
MaybeLoc = &Env.createStorageLocation(D);
Env.setStorageLocation(D, *MaybeLoc);
}
auto &Loc = *MaybeLoc;
const Expr *InitExpr = D.getInit();
if (InitExpr == nullptr) {
// No initializer expression - associate `Loc` with a new value.
if (Value *Val = Env.createValue(D.getType()))
Env.setValue(Loc, *Val);
return;
}
if (D.getType()->isReferenceType()) {
// Initializing a reference variable - do not create a reference to
// reference.
if (auto *InitExprLoc =
Env.getStorageLocation(*InitExpr, SkipPast::Reference)) {
auto &Val =
Env.takeOwnership(std::make_unique<ReferenceValue>(*InitExprLoc));
Env.setValue(Loc, Val);
}
} else if (auto *InitExprVal = Env.getValue(*InitExpr, SkipPast::None)) {
Env.setValue(Loc, *InitExprVal);
}
if (Env.getValue(Loc) == nullptr) {
// We arrive here in (the few) cases where an expression is intentionally
// "uninterpreted". There are two ways to handle this situation: propagate
// the status, so that uninterpreted initializers result in uninterpreted
// variables, or provide a default value. We choose the latter so that
// later refinements of the variable can be used for reasoning about the
// surrounding code.
//
// FIXME. If and when we interpret all language cases, change this to
// assert that `InitExpr` is interpreted, rather than supplying a default
// value (assuming we don't update the environment API to return
// references).
if (Value *Val = Env.createValue(D.getType()))
Env.setValue(Loc, *Val);
}
if (const auto *Decomp = dyn_cast<DecompositionDecl>(&D)) {
// If VarDecl is a DecompositionDecl, evaluate each of its bindings. This
// needs to be evaluated after initializing the values in the storage for
// VarDecl, as the bindings refer to them.
// FIXME: Add support for ArraySubscriptExpr.
// FIXME: Consider adding AST nodes used in BindingDecls to the CFG.
for (const auto *B : Decomp->bindings()) {
if (auto *ME = dyn_cast_or_null<MemberExpr>(B->getBinding())) {
auto *DE = dyn_cast_or_null<DeclRefExpr>(ME->getBase());
if (DE == nullptr)
continue;
// ME and its base haven't been visited because they aren't included
// in the statements of the CFG basic block.
VisitDeclRefExpr(DE);
VisitMemberExpr(ME);
if (auto *Loc = Env.getStorageLocation(*ME, SkipPast::Reference))
Env.setStorageLocation(*B, *Loc);
} else if (auto *VD = B->getHoldingVar()) {
// Holding vars are used to back the BindingDecls of tuple-like
// types. The holding var declarations appear *after* this statement,
// so we have to create a location for them here to share with `B`. We
// don't visit the binding, because we know it will be a DeclRefExpr
// to `VD`.
auto &VDLoc = Env.createStorageLocation(*VD);
Env.setStorageLocation(*VD, VDLoc);
Env.setStorageLocation(*B, VDLoc);
}
}
}
}
void VisitImplicitCastExpr(const ImplicitCastExpr *S) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
switch (S->getCastKind()) {
case CK_IntegralToBoolean: {
// This cast creates a new, boolean value from the integral value. We
// model that with a fresh value in the environment, unless it's already a
// boolean.
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
if (auto *SubExprVal = dyn_cast_or_null<BoolValue>(
Env.getValue(*SubExpr, SkipPast::Reference)))
Env.setValue(Loc, *SubExprVal);
else
// FIXME: If integer modeling is added, then update this code to create
// the boolean based on the integer model.
Env.setValue(Loc, Env.makeAtomicBoolValue());
break;
}
case CK_LValueToRValue: {
// When an L-value is used as an R-value, it may result in sharing, so we
// need to unpack any nested `Top`s.
auto *SubExprVal = maybeUnpackLValueExpr(*SubExpr, Env);
if (SubExprVal == nullptr)
break;
auto &ExprLoc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, ExprLoc);
Env.setValue(ExprLoc, *SubExprVal);
break;
}
case CK_IntegralCast:
// FIXME: This cast creates a new integral value from the
// subexpression. But, because we don't model integers, we don't
// distinguish between this new value and the underlying one. If integer
// modeling is added, then update this code to create a fresh location and
// value.
case CK_UncheckedDerivedToBase:
case CK_ConstructorConversion:
case CK_UserDefinedConversion:
// FIXME: Add tests that excercise CK_UncheckedDerivedToBase,
// CK_ConstructorConversion, and CK_UserDefinedConversion.
case CK_NoOp: {
// FIXME: Consider making `Environment::getStorageLocation` skip noop
// expressions (this and other similar expressions in the file) instead of
// assigning them storage locations.
auto *SubExprLoc = Env.getStorageLocation(*SubExpr, SkipPast::None);
if (SubExprLoc == nullptr)
break;
Env.setStorageLocation(*S, *SubExprLoc);
break;
}
case CK_NullToPointer:
case CK_NullToMemberPointer: {
auto &Loc = Env.createStorageLocation(S->getType());
Env.setStorageLocation(*S, Loc);
auto &NullPointerVal =
Env.getOrCreateNullPointerValue(S->getType()->getPointeeType());
Env.setValue(Loc, NullPointerVal);
break;
}
default:
break;
}
}
void VisitUnaryOperator(const UnaryOperator *S) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
switch (S->getOpcode()) {
case UO_Deref: {
// Skip past a reference to handle dereference of a dependent pointer.
const auto *SubExprVal = cast_or_null<PointerValue>(
Env.getValue(*SubExpr, SkipPast::Reference));
if (SubExprVal == nullptr)
break;
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
Env.setValue(Loc, Env.takeOwnership(std::make_unique<ReferenceValue>(
SubExprVal->getPointeeLoc())));
break;
}
case UO_AddrOf: {
// Do not form a pointer to a reference. If `SubExpr` is assigned a
// `ReferenceValue` then form a value that points to the location of its
// pointee.
StorageLocation *PointeeLoc =
Env.getStorageLocation(*SubExpr, SkipPast::Reference);
if (PointeeLoc == nullptr)
break;
auto &PointerLoc = Env.createStorageLocation(*S);
auto &PointerVal =
Env.takeOwnership(std::make_unique<PointerValue>(*PointeeLoc));
Env.setStorageLocation(*S, PointerLoc);
Env.setValue(PointerLoc, PointerVal);
break;
}
case UO_LNot: {
auto *SubExprVal =
dyn_cast_or_null<BoolValue>(Env.getValue(*SubExpr, SkipPast::None));
if (SubExprVal == nullptr)
break;
auto &ExprLoc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, ExprLoc);
Env.setValue(ExprLoc, Env.makeNot(*SubExprVal));
break;
}
default:
break;
}
}
void VisitCXXThisExpr(const CXXThisExpr *S) {
auto *ThisPointeeLoc = Env.getThisPointeeStorageLocation();
if (ThisPointeeLoc == nullptr)
// Unions are not supported yet, and will not have a location for the
// `this` expression's pointee.
return;
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
Env.setValue(Loc, Env.takeOwnership(
std::make_unique<PointerValue>(*ThisPointeeLoc)));
}
void VisitReturnStmt(const ReturnStmt *S) {
if (!Options.ContextSensitiveOpts)
return;
auto *Ret = S->getRetValue();
if (Ret == nullptr)
return;
auto *Val = Env.getValue(*Ret, SkipPast::None);
if (Val == nullptr)
return;
// FIXME: Support reference-type returns.
if (Val->getKind() == Value::Kind::Reference)
return;
auto *Loc = Env.getReturnStorageLocation();
assert(Loc != nullptr);
// FIXME: Support reference-type returns.
if (Loc->getType()->isReferenceType())
return;
// FIXME: Model NRVO.
Env.setValue(*Loc, *Val);
}
void VisitMemberExpr(const MemberExpr *S) {
ValueDecl *Member = S->getMemberDecl();
assert(Member != nullptr);
// FIXME: Consider assigning pointer values to function member expressions.
if (Member->isFunctionOrFunctionTemplate())
return;
if (auto *D = dyn_cast<VarDecl>(Member)) {
if (D->hasGlobalStorage()) {
auto *VarDeclLoc = Env.getStorageLocation(*D, SkipPast::None);
if (VarDeclLoc == nullptr)
return;
if (VarDeclLoc->getType()->isReferenceType()) {
Env.setStorageLocation(*S, *VarDeclLoc);
} else {
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
Env.setValue(Loc, Env.takeOwnership(
std::make_unique<ReferenceValue>(*VarDeclLoc)));
}
return;
}
}
// The receiver can be either a value or a pointer to a value. Skip past the
// indirection to handle both cases.
auto *BaseLoc = cast_or_null<AggregateStorageLocation>(
Env.getStorageLocation(*S->getBase(), SkipPast::ReferenceThenPointer));
if (BaseLoc == nullptr)
return;
auto &MemberLoc = BaseLoc->getChild(*Member);
if (MemberLoc.getType()->isReferenceType()) {
Env.setStorageLocation(*S, MemberLoc);
} else {
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
Env.setValue(
Loc, Env.takeOwnership(std::make_unique<ReferenceValue>(MemberLoc)));
}
}
void VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *S) {
const Expr *InitExpr = S->getExpr();
assert(InitExpr != nullptr);
Value *InitExprVal = Env.getValue(*InitExpr, SkipPast::None);
if (InitExprVal == nullptr)
return;
const FieldDecl *Field = S->getField();
assert(Field != nullptr);
auto &ThisLoc =
*cast<AggregateStorageLocation>(Env.getThisPointeeStorageLocation());
auto &FieldLoc = ThisLoc.getChild(*Field);
Env.setValue(FieldLoc, *InitExprVal);
}
void VisitCXXConstructExpr(const CXXConstructExpr *S) {
const CXXConstructorDecl *ConstructorDecl = S->getConstructor();
assert(ConstructorDecl != nullptr);
if (ConstructorDecl->isCopyOrMoveConstructor()) {
assert(S->getNumArgs() == 1);
const Expr *Arg = S->getArg(0);
assert(Arg != nullptr);
if (S->isElidable()) {
auto *ArgLoc = Env.getStorageLocation(*Arg, SkipPast::Reference);
if (ArgLoc == nullptr)
return;
Env.setStorageLocation(*S, *ArgLoc);
} else if (auto *ArgVal = Env.getValue(*Arg, SkipPast::Reference)) {
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
Env.setValue(Loc, *ArgVal);
}
return;
}
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
if (Value *Val = Env.createValue(S->getType()))
Env.setValue(Loc, *Val);
transferInlineCall(S, ConstructorDecl);
}
void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *S) {
if (S->getOperator() == OO_Equal) {
assert(S->getNumArgs() == 2);
const Expr *Arg0 = S->getArg(0);
assert(Arg0 != nullptr);
const Expr *Arg1 = S->getArg(1);
assert(Arg1 != nullptr);
// Evaluate only copy and move assignment operators.
auto *Arg0Type = Arg0->getType()->getUnqualifiedDesugaredType();
auto *Arg1Type = Arg1->getType()->getUnqualifiedDesugaredType();
if (Arg0Type != Arg1Type)
return;
auto *ObjectLoc = Env.getStorageLocation(*Arg0, SkipPast::Reference);
if (ObjectLoc == nullptr)
return;
auto *Val = Env.getValue(*Arg1, SkipPast::Reference);
if (Val == nullptr)
return;
// Assign a value to the storage location of the object.
Env.setValue(*ObjectLoc, *Val);
// FIXME: Add a test for the value of the whole expression.
// Assign a storage location for the whole expression.
Env.setStorageLocation(*S, *ObjectLoc);
}
}
void VisitCXXFunctionalCastExpr(const CXXFunctionalCastExpr *S) {
if (S->getCastKind() == CK_ConstructorConversion) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
auto *SubExprLoc = Env.getStorageLocation(*SubExpr, SkipPast::None);
if (SubExprLoc == nullptr)
return;
Env.setStorageLocation(*S, *SubExprLoc);
}
}
void VisitCXXTemporaryObjectExpr(const CXXTemporaryObjectExpr *S) {
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
if (Value *Val = Env.createValue(S->getType()))
Env.setValue(Loc, *Val);
}
void VisitCallExpr(const CallExpr *S) {
// Of clang's builtins, only `__builtin_expect` is handled explicitly, since
// others (like trap, debugtrap, and unreachable) are handled by CFG
// construction.
if (S->isCallToStdMove()) {
assert(S->getNumArgs() == 1);
const Expr *Arg = S->getArg(0);
assert(Arg != nullptr);
auto *ArgLoc = Env.getStorageLocation(*Arg, SkipPast::None);
if (ArgLoc == nullptr)
return;
Env.setStorageLocation(*S, *ArgLoc);
} else if (S->getDirectCallee() != nullptr &&
S->getDirectCallee()->getBuiltinID() ==
Builtin::BI__builtin_expect) {
assert(S->getNumArgs() > 0);
assert(S->getArg(0) != nullptr);
// `__builtin_expect` returns by-value, so strip away any potential
// references in the argument.
auto *ArgLoc = Env.getStorageLocation(*S->getArg(0), SkipPast::Reference);
if (ArgLoc == nullptr)
return;
Env.setStorageLocation(*S, *ArgLoc);
} else if (const FunctionDecl *F = S->getDirectCallee()) {
transferInlineCall(S, F);
}
}
void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *S) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
auto *SubExprLoc = Env.getStorageLocation(*SubExpr, SkipPast::None);
if (SubExprLoc == nullptr)
return;
Env.setStorageLocation(*S, *SubExprLoc);
}
void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *S) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
auto *SubExprLoc = Env.getStorageLocation(*SubExpr, SkipPast::None);
if (SubExprLoc == nullptr)
return;
Env.setStorageLocation(*S, *SubExprLoc);
}
void VisitCXXStaticCastExpr(const CXXStaticCastExpr *S) {
if (S->getCastKind() == CK_NoOp) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
auto *SubExprLoc = Env.getStorageLocation(*SubExpr, SkipPast::None);
if (SubExprLoc == nullptr)
return;
Env.setStorageLocation(*S, *SubExprLoc);
}
}
void VisitConditionalOperator(const ConditionalOperator *S) {
// FIXME: Revisit this once flow conditions are added to the framework. For
// `a = b ? c : d` we can add `b => a == c && !b => a == d` to the flow
// condition.
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
if (Value *Val = Env.createValue(S->getType()))
Env.setValue(Loc, *Val);
}
void VisitInitListExpr(const InitListExpr *S) {
QualType Type = S->getType();
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
auto *Val = Env.createValue(Type);
if (Val == nullptr)
return;
Env.setValue(Loc, *Val);
if (Type->isStructureOrClassType()) {
for (auto It : llvm::zip(Type->getAsRecordDecl()->fields(), S->inits())) {
const FieldDecl *Field = std::get<0>(It);
assert(Field != nullptr);
const Expr *Init = std::get<1>(It);
assert(Init != nullptr);
if (Value *InitVal = Env.getValue(*Init, SkipPast::None))
cast<StructValue>(Val)->setChild(*Field, *InitVal);
}
}
// FIXME: Implement array initialization.
}
void VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *S) {
auto &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
Env.setValue(Loc, Env.getBoolLiteralValue(S->getValue()));
}
void VisitParenExpr(const ParenExpr *S) {
// The CFG does not contain `ParenExpr` as top-level statements in basic
// blocks, however manual traversal to sub-expressions may encounter them.
// Redirect to the sub-expression.
auto *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
Visit(SubExpr);
}
void VisitExprWithCleanups(const ExprWithCleanups *S) {
// The CFG does not contain `ExprWithCleanups` as top-level statements in
// basic blocks, however manual traversal to sub-expressions may encounter
// them. Redirect to the sub-expression.
auto *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
Visit(SubExpr);
}
private:
BoolValue &getLogicOperatorSubExprValue(const Expr &SubExpr) {
// `SubExpr` and its parent logic operator might be part of different basic
// blocks. We try to access the value that is assigned to `SubExpr` in the
// corresponding environment.
if (const Environment *SubExprEnv = StmtToEnv.getEnvironment(SubExpr)) {
if (auto *Val = dyn_cast_or_null<BoolValue>(
SubExprEnv->getValue(SubExpr, SkipPast::Reference)))
return *Val;
}
if (Env.getStorageLocation(SubExpr, SkipPast::None) == nullptr) {
// Sub-expressions that are logic operators are not added in basic blocks
// (e.g. see CFG for `bool d = a && (b || c);`). If `SubExpr` is a logic
// operator, it may not have been evaluated and assigned a value yet. In
// that case, we need to first visit `SubExpr` and then try to get the
// value that gets assigned to it.
Visit(&SubExpr);
}
if (auto *Val = dyn_cast_or_null<BoolValue>(
Env.getValue(SubExpr, SkipPast::Reference)))
return *Val;
// If the value of `SubExpr` is still unknown, we create a fresh symbolic
// boolean value for it.
return Env.makeAtomicBoolValue();
}
// If context sensitivity is enabled, try to analyze the body of the callee
// `F` of `S`. The type `E` must be either `CallExpr` or `CXXConstructExpr`.
template <typename E>
void transferInlineCall(const E *S, const FunctionDecl *F) {
if (!(Options.ContextSensitiveOpts &&
Env.canDescend(Options.ContextSensitiveOpts->Depth, F)))
return;
const ControlFlowContext *CFCtx = Env.getControlFlowContext(F);
if (!CFCtx)
return;
// FIXME: We don't support context-sensitive analysis of recursion, so
// we should return early here if `F` is the same as the `FunctionDecl`
// holding `S` itself.
auto ExitBlock = CFCtx->getCFG().getExit().getBlockID();
if (const auto *NonConstructExpr = dyn_cast<CallExpr>(S)) {
// Note that it is important for the storage location of `S` to be set
// before `pushCall`, because the latter uses it to set the storage
// location for `return`.
auto &ReturnLoc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, ReturnLoc);
}
auto CalleeEnv = Env.pushCall(S);
// FIXME: Use the same analysis as the caller for the callee. Note,
// though, that doing so would require support for changing the analysis's
// ASTContext.
assert(CFCtx->getDecl() != nullptr &&
"ControlFlowContexts in the environment should always carry a decl");
auto Analysis = NoopAnalysis(CFCtx->getDecl()->getASTContext(),
DataflowAnalysisOptions{Options});
auto BlockToOutputState =
dataflow::runDataflowAnalysis(*CFCtx, Analysis, CalleeEnv);
assert(BlockToOutputState);
assert(ExitBlock < BlockToOutputState->size());
auto ExitState = (*BlockToOutputState)[ExitBlock];
assert(ExitState);
Env.popCall(ExitState->Env);
}
const StmtToEnvMap &StmtToEnv;
Environment &Env;
TransferOptions Options;
};
void transfer(const StmtToEnvMap &StmtToEnv, const Stmt &S, Environment &Env,
TransferOptions Options) {
TransferVisitor(StmtToEnv, Env, Options).Visit(&S);
}
} // namespace dataflow
} // namespace clang