The NullabilityChecker has a very early policy decision that non-inlined
property accesses will be inferred as returning nonnull, despite nullability
annotations to the contrary. This decision eliminates false positives related
to very common code patterns that look like this:
if (foo.prop) {
[bar doStuffWithNonnull:foo.prop];
}
While this probably represents a correct nil-check, the analyzer can't
determine correctness without gaining visibility into the property
implementation.
Unfortunately, inferring nullable properties as nonnull comes at the cost of
significantly reduced code coverage. My goal here is to enable detection of
many property-related nullability violations without a large increase
in false positives.
The approach is to introduce a heuristic: after accessing the value of
a property, if the analyzer at any time proves that the property value is
nonnull (which would happen in particular due to a nil-check conditional),
then subsequent property accesses on that code path will be *inferred*
as nonnull. This captures the pattern described above, which I believe
to be the dominant source of false positives in real code.
https://reviews.llvm.org/D131655
1382 lines
52 KiB
C++
1382 lines
52 KiB
C++
//===-- NullabilityChecker.cpp - Nullability checker ----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This checker tries to find nullability violations. There are several kinds of
|
|
// possible violations:
|
|
// * Null pointer is passed to a pointer which has a _Nonnull type.
|
|
// * Null pointer is returned from a function which has a _Nonnull return type.
|
|
// * Nullable pointer is passed to a pointer which has a _Nonnull type.
|
|
// * Nullable pointer is returned from a function which has a _Nonnull return
|
|
// type.
|
|
// * Nullable pointer is dereferenced.
|
|
//
|
|
// This checker propagates the nullability information of the pointers and looks
|
|
// for the patterns that are described above. Explicit casts are trusted and are
|
|
// considered a way to suppress false positives for this checker. The other way
|
|
// to suppress warnings would be to add asserts or guarding if statements to the
|
|
// code. In addition to the nullability propagation this checker also uses some
|
|
// heuristics to suppress potential false positives.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
|
|
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
|
|
#include "clang/StaticAnalyzer/Core/Checker.h"
|
|
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
|
|
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/Path.h"
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
|
|
namespace {
|
|
|
|
/// Returns the most nullable nullability. This is used for message expressions
|
|
/// like [receiver method], where the nullability of this expression is either
|
|
/// the nullability of the receiver or the nullability of the return type of the
|
|
/// method, depending on which is more nullable. Contradicted is considered to
|
|
/// be the most nullable, to avoid false positive results.
|
|
Nullability getMostNullable(Nullability Lhs, Nullability Rhs) {
|
|
return static_cast<Nullability>(
|
|
std::min(static_cast<char>(Lhs), static_cast<char>(Rhs)));
|
|
}
|
|
|
|
const char *getNullabilityString(Nullability Nullab) {
|
|
switch (Nullab) {
|
|
case Nullability::Contradicted:
|
|
return "contradicted";
|
|
case Nullability::Nullable:
|
|
return "nullable";
|
|
case Nullability::Unspecified:
|
|
return "unspecified";
|
|
case Nullability::Nonnull:
|
|
return "nonnull";
|
|
}
|
|
llvm_unreachable("Unexpected enumeration.");
|
|
return "";
|
|
}
|
|
|
|
// These enums are used as an index to ErrorMessages array.
|
|
enum class ErrorKind : int {
|
|
NilAssignedToNonnull,
|
|
NilPassedToNonnull,
|
|
NilReturnedToNonnull,
|
|
NullableAssignedToNonnull,
|
|
NullableReturnedToNonnull,
|
|
NullableDereferenced,
|
|
NullablePassedToNonnull
|
|
};
|
|
|
|
class NullabilityChecker
|
|
: public Checker<check::Bind, check::PreCall, check::PreStmt<ReturnStmt>,
|
|
check::PostCall, check::PostStmt<ExplicitCastExpr>,
|
|
check::PostObjCMessage, check::DeadSymbols, eval::Assume,
|
|
check::Location, check::Event<ImplicitNullDerefEvent>> {
|
|
|
|
public:
|
|
// If true, the checker will not diagnose nullabilility issues for calls
|
|
// to system headers. This option is motivated by the observation that large
|
|
// projects may have many nullability warnings. These projects may
|
|
// find warnings about nullability annotations that they have explicitly
|
|
// added themselves higher priority to fix than warnings on calls to system
|
|
// libraries.
|
|
bool NoDiagnoseCallsToSystemHeaders = false;
|
|
|
|
void checkBind(SVal L, SVal V, const Stmt *S, CheckerContext &C) const;
|
|
void checkPostStmt(const ExplicitCastExpr *CE, CheckerContext &C) const;
|
|
void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
|
|
void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
|
|
void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
|
|
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
|
|
void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
|
|
void checkEvent(ImplicitNullDerefEvent Event) const;
|
|
void checkLocation(SVal Location, bool IsLoad, const Stmt *S,
|
|
CheckerContext &C) const;
|
|
ProgramStateRef evalAssume(ProgramStateRef State, SVal Cond,
|
|
bool Assumption) const;
|
|
|
|
void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
|
|
const char *Sep) const override;
|
|
|
|
enum CheckKind {
|
|
CK_NullPassedToNonnull,
|
|
CK_NullReturnedFromNonnull,
|
|
CK_NullableDereferenced,
|
|
CK_NullablePassedToNonnull,
|
|
CK_NullableReturnedFromNonnull,
|
|
CK_NumCheckKinds
|
|
};
|
|
|
|
bool ChecksEnabled[CK_NumCheckKinds] = {false};
|
|
CheckerNameRef CheckNames[CK_NumCheckKinds];
|
|
mutable std::unique_ptr<BugType> BTs[CK_NumCheckKinds];
|
|
|
|
const std::unique_ptr<BugType> &getBugType(CheckKind Kind) const {
|
|
if (!BTs[Kind])
|
|
BTs[Kind].reset(new BugType(CheckNames[Kind], "Nullability",
|
|
categories::MemoryError));
|
|
return BTs[Kind];
|
|
}
|
|
|
|
// When set to false no nullability information will be tracked in
|
|
// NullabilityMap. It is possible to catch errors like passing a null pointer
|
|
// to a callee that expects nonnull argument without the information that is
|
|
// stored in the NullabilityMap. This is an optimization.
|
|
bool NeedTracking = false;
|
|
|
|
private:
|
|
class NullabilityBugVisitor : public BugReporterVisitor {
|
|
public:
|
|
NullabilityBugVisitor(const MemRegion *M) : Region(M) {}
|
|
|
|
void Profile(llvm::FoldingSetNodeID &ID) const override {
|
|
static int X = 0;
|
|
ID.AddPointer(&X);
|
|
ID.AddPointer(Region);
|
|
}
|
|
|
|
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
|
|
BugReporterContext &BRC,
|
|
PathSensitiveBugReport &BR) override;
|
|
|
|
private:
|
|
// The tracked region.
|
|
const MemRegion *Region;
|
|
};
|
|
|
|
/// When any of the nonnull arguments of the analyzed function is null, do not
|
|
/// report anything and turn off the check.
|
|
///
|
|
/// When \p SuppressPath is set to true, no more bugs will be reported on this
|
|
/// path by this checker.
|
|
void reportBugIfInvariantHolds(StringRef Msg, ErrorKind Error, CheckKind CK,
|
|
ExplodedNode *N, const MemRegion *Region,
|
|
CheckerContext &C,
|
|
const Stmt *ValueExpr = nullptr,
|
|
bool SuppressPath = false) const;
|
|
|
|
void reportBug(StringRef Msg, ErrorKind Error, CheckKind CK, ExplodedNode *N,
|
|
const MemRegion *Region, BugReporter &BR,
|
|
const Stmt *ValueExpr = nullptr) const {
|
|
const std::unique_ptr<BugType> &BT = getBugType(CK);
|
|
auto R = std::make_unique<PathSensitiveBugReport>(*BT, Msg, N);
|
|
if (Region) {
|
|
R->markInteresting(Region);
|
|
R->addVisitor<NullabilityBugVisitor>(Region);
|
|
}
|
|
if (ValueExpr) {
|
|
R->addRange(ValueExpr->getSourceRange());
|
|
if (Error == ErrorKind::NilAssignedToNonnull ||
|
|
Error == ErrorKind::NilPassedToNonnull ||
|
|
Error == ErrorKind::NilReturnedToNonnull)
|
|
if (const auto *Ex = dyn_cast<Expr>(ValueExpr))
|
|
bugreporter::trackExpressionValue(N, Ex, *R);
|
|
}
|
|
BR.emitReport(std::move(R));
|
|
}
|
|
|
|
/// If an SVal wraps a region that should be tracked, it will return a pointer
|
|
/// to the wrapped region. Otherwise it will return a nullptr.
|
|
const SymbolicRegion *getTrackRegion(SVal Val,
|
|
bool CheckSuperRegion = false) const;
|
|
|
|
/// Returns true if the call is diagnosable in the current analyzer
|
|
/// configuration.
|
|
bool isDiagnosableCall(const CallEvent &Call) const {
|
|
if (NoDiagnoseCallsToSystemHeaders && Call.isInSystemHeader())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
class NullabilityState {
|
|
public:
|
|
NullabilityState(Nullability Nullab, const Stmt *Source = nullptr)
|
|
: Nullab(Nullab), Source(Source) {}
|
|
|
|
const Stmt *getNullabilitySource() const { return Source; }
|
|
|
|
Nullability getValue() const { return Nullab; }
|
|
|
|
void Profile(llvm::FoldingSetNodeID &ID) const {
|
|
ID.AddInteger(static_cast<char>(Nullab));
|
|
ID.AddPointer(Source);
|
|
}
|
|
|
|
void print(raw_ostream &Out) const {
|
|
Out << getNullabilityString(Nullab) << "\n";
|
|
}
|
|
|
|
private:
|
|
Nullability Nullab;
|
|
// Source is the expression which determined the nullability. For example in a
|
|
// message like [nullable nonnull_returning] has nullable nullability, because
|
|
// the receiver is nullable. Here the receiver will be the source of the
|
|
// nullability. This is useful information when the diagnostics are generated.
|
|
const Stmt *Source;
|
|
};
|
|
|
|
bool operator==(NullabilityState Lhs, NullabilityState Rhs) {
|
|
return Lhs.getValue() == Rhs.getValue() &&
|
|
Lhs.getNullabilitySource() == Rhs.getNullabilitySource();
|
|
}
|
|
|
|
// For the purpose of tracking historical property accesses, the key for lookup
|
|
// is an object pointer (could be an instance or a class) paired with the unique
|
|
// identifier for the property being invoked on that object.
|
|
using ObjectPropPair = std::pair<const MemRegion *, const IdentifierInfo *>;
|
|
|
|
// Metadata associated with the return value from a recorded property access.
|
|
struct ConstrainedPropertyVal {
|
|
// This will reference the conjured return SVal for some call
|
|
// of the form [object property]
|
|
DefinedOrUnknownSVal Value;
|
|
|
|
// If the SVal has been determined to be nonnull, that is recorded here
|
|
bool isConstrainedNonnull;
|
|
|
|
ConstrainedPropertyVal(DefinedOrUnknownSVal SV)
|
|
: Value(SV), isConstrainedNonnull(false) {}
|
|
|
|
void Profile(llvm::FoldingSetNodeID &ID) const {
|
|
Value.Profile(ID);
|
|
ID.AddInteger(isConstrainedNonnull ? 1 : 0);
|
|
}
|
|
};
|
|
|
|
bool operator==(const ConstrainedPropertyVal &Lhs,
|
|
const ConstrainedPropertyVal &Rhs) {
|
|
return Lhs.Value == Rhs.Value &&
|
|
Lhs.isConstrainedNonnull == Rhs.isConstrainedNonnull;
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
REGISTER_MAP_WITH_PROGRAMSTATE(NullabilityMap, const MemRegion *,
|
|
NullabilityState)
|
|
REGISTER_MAP_WITH_PROGRAMSTATE(PropertyAccessesMap, ObjectPropPair,
|
|
ConstrainedPropertyVal)
|
|
|
|
// We say "the nullability type invariant is violated" when a location with a
|
|
// non-null type contains NULL or a function with a non-null return type returns
|
|
// NULL. Violations of the nullability type invariant can be detected either
|
|
// directly (for example, when NULL is passed as an argument to a nonnull
|
|
// parameter) or indirectly (for example, when, inside a function, the
|
|
// programmer defensively checks whether a nonnull parameter contains NULL and
|
|
// finds that it does).
|
|
//
|
|
// As a matter of policy, the nullability checker typically warns on direct
|
|
// violations of the nullability invariant (although it uses various
|
|
// heuristics to suppress warnings in some cases) but will not warn if the
|
|
// invariant has already been violated along the path (either directly or
|
|
// indirectly). As a practical matter, this prevents the analyzer from
|
|
// (1) warning on defensive code paths where a nullability precondition is
|
|
// determined to have been violated, (2) warning additional times after an
|
|
// initial direct violation has been discovered, and (3) warning after a direct
|
|
// violation that has been implicitly or explicitly suppressed (for
|
|
// example, with a cast of NULL to _Nonnull). In essence, once an invariant
|
|
// violation is detected on a path, this checker will be essentially turned off
|
|
// for the rest of the analysis
|
|
//
|
|
// The analyzer takes this approach (rather than generating a sink node) to
|
|
// ensure coverage of defensive paths, which may be important for backwards
|
|
// compatibility in codebases that were developed without nullability in mind.
|
|
REGISTER_TRAIT_WITH_PROGRAMSTATE(InvariantViolated, bool)
|
|
|
|
enum class NullConstraint { IsNull, IsNotNull, Unknown };
|
|
|
|
static NullConstraint getNullConstraint(DefinedOrUnknownSVal Val,
|
|
ProgramStateRef State) {
|
|
ConditionTruthVal Nullness = State->isNull(Val);
|
|
if (Nullness.isConstrainedFalse())
|
|
return NullConstraint::IsNotNull;
|
|
if (Nullness.isConstrainedTrue())
|
|
return NullConstraint::IsNull;
|
|
return NullConstraint::Unknown;
|
|
}
|
|
|
|
const SymbolicRegion *
|
|
NullabilityChecker::getTrackRegion(SVal Val, bool CheckSuperRegion) const {
|
|
if (!NeedTracking)
|
|
return nullptr;
|
|
|
|
auto RegionSVal = Val.getAs<loc::MemRegionVal>();
|
|
if (!RegionSVal)
|
|
return nullptr;
|
|
|
|
const MemRegion *Region = RegionSVal->getRegion();
|
|
|
|
if (CheckSuperRegion) {
|
|
if (const SubRegion *FieldReg = Region->getAs<FieldRegion>()) {
|
|
if (const auto *ER = dyn_cast<ElementRegion>(FieldReg->getSuperRegion()))
|
|
FieldReg = ER;
|
|
return dyn_cast<SymbolicRegion>(FieldReg->getSuperRegion());
|
|
}
|
|
if (auto ElementReg = Region->getAs<ElementRegion>())
|
|
return dyn_cast<SymbolicRegion>(ElementReg->getSuperRegion());
|
|
}
|
|
|
|
return dyn_cast<SymbolicRegion>(Region);
|
|
}
|
|
|
|
PathDiagnosticPieceRef NullabilityChecker::NullabilityBugVisitor::VisitNode(
|
|
const ExplodedNode *N, BugReporterContext &BRC,
|
|
PathSensitiveBugReport &BR) {
|
|
ProgramStateRef State = N->getState();
|
|
ProgramStateRef StatePrev = N->getFirstPred()->getState();
|
|
|
|
const NullabilityState *TrackedNullab = State->get<NullabilityMap>(Region);
|
|
const NullabilityState *TrackedNullabPrev =
|
|
StatePrev->get<NullabilityMap>(Region);
|
|
if (!TrackedNullab)
|
|
return nullptr;
|
|
|
|
if (TrackedNullabPrev &&
|
|
TrackedNullabPrev->getValue() == TrackedNullab->getValue())
|
|
return nullptr;
|
|
|
|
// Retrieve the associated statement.
|
|
const Stmt *S = TrackedNullab->getNullabilitySource();
|
|
if (!S || S->getBeginLoc().isInvalid()) {
|
|
S = N->getStmtForDiagnostics();
|
|
}
|
|
|
|
if (!S)
|
|
return nullptr;
|
|
|
|
std::string InfoText =
|
|
(llvm::Twine("Nullability '") +
|
|
getNullabilityString(TrackedNullab->getValue()) + "' is inferred")
|
|
.str();
|
|
|
|
// Generate the extra diagnostic.
|
|
PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
|
|
N->getLocationContext());
|
|
return std::make_shared<PathDiagnosticEventPiece>(Pos, InfoText, true);
|
|
}
|
|
|
|
/// Returns true when the value stored at the given location has been
|
|
/// constrained to null after being passed through an object of nonnnull type.
|
|
static bool checkValueAtLValForInvariantViolation(ProgramStateRef State,
|
|
SVal LV, QualType T) {
|
|
if (getNullabilityAnnotation(T) != Nullability::Nonnull)
|
|
return false;
|
|
|
|
auto RegionVal = LV.getAs<loc::MemRegionVal>();
|
|
if (!RegionVal)
|
|
return false;
|
|
|
|
// If the value was constrained to null *after* it was passed through that
|
|
// location, it could not have been a concrete pointer *when* it was passed.
|
|
// In that case we would have handled the situation when the value was
|
|
// bound to that location, by emitting (or not emitting) a report.
|
|
// Therefore we are only interested in symbolic regions that can be either
|
|
// null or non-null depending on the value of their respective symbol.
|
|
auto StoredVal = State->getSVal(*RegionVal).getAs<loc::MemRegionVal>();
|
|
if (!StoredVal || !isa<SymbolicRegion>(StoredVal->getRegion()))
|
|
return false;
|
|
|
|
if (getNullConstraint(*StoredVal, State) == NullConstraint::IsNull)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
checkParamsForPreconditionViolation(ArrayRef<ParmVarDecl *> Params,
|
|
ProgramStateRef State,
|
|
const LocationContext *LocCtxt) {
|
|
for (const auto *ParamDecl : Params) {
|
|
if (ParamDecl->isParameterPack())
|
|
break;
|
|
|
|
SVal LV = State->getLValue(ParamDecl, LocCtxt);
|
|
if (checkValueAtLValForInvariantViolation(State, LV,
|
|
ParamDecl->getType())) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
checkSelfIvarsForInvariantViolation(ProgramStateRef State,
|
|
const LocationContext *LocCtxt) {
|
|
auto *MD = dyn_cast<ObjCMethodDecl>(LocCtxt->getDecl());
|
|
if (!MD || !MD->isInstanceMethod())
|
|
return false;
|
|
|
|
const ImplicitParamDecl *SelfDecl = LocCtxt->getSelfDecl();
|
|
if (!SelfDecl)
|
|
return false;
|
|
|
|
SVal SelfVal = State->getSVal(State->getRegion(SelfDecl, LocCtxt));
|
|
|
|
const ObjCObjectPointerType *SelfType =
|
|
dyn_cast<ObjCObjectPointerType>(SelfDecl->getType());
|
|
if (!SelfType)
|
|
return false;
|
|
|
|
const ObjCInterfaceDecl *ID = SelfType->getInterfaceDecl();
|
|
if (!ID)
|
|
return false;
|
|
|
|
for (const auto *IvarDecl : ID->ivars()) {
|
|
SVal LV = State->getLValue(IvarDecl, SelfVal);
|
|
if (checkValueAtLValForInvariantViolation(State, LV, IvarDecl->getType())) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool checkInvariantViolation(ProgramStateRef State, ExplodedNode *N,
|
|
CheckerContext &C) {
|
|
if (State->get<InvariantViolated>())
|
|
return true;
|
|
|
|
const LocationContext *LocCtxt = C.getLocationContext();
|
|
const Decl *D = LocCtxt->getDecl();
|
|
if (!D)
|
|
return false;
|
|
|
|
ArrayRef<ParmVarDecl*> Params;
|
|
if (const auto *BD = dyn_cast<BlockDecl>(D))
|
|
Params = BD->parameters();
|
|
else if (const auto *FD = dyn_cast<FunctionDecl>(D))
|
|
Params = FD->parameters();
|
|
else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
|
|
Params = MD->parameters();
|
|
else
|
|
return false;
|
|
|
|
if (checkParamsForPreconditionViolation(Params, State, LocCtxt) ||
|
|
checkSelfIvarsForInvariantViolation(State, LocCtxt)) {
|
|
if (!N->isSink())
|
|
C.addTransition(State->set<InvariantViolated>(true), N);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void NullabilityChecker::reportBugIfInvariantHolds(
|
|
StringRef Msg, ErrorKind Error, CheckKind CK, ExplodedNode *N,
|
|
const MemRegion *Region, CheckerContext &C, const Stmt *ValueExpr,
|
|
bool SuppressPath) const {
|
|
ProgramStateRef OriginalState = N->getState();
|
|
|
|
if (checkInvariantViolation(OriginalState, N, C))
|
|
return;
|
|
if (SuppressPath) {
|
|
OriginalState = OriginalState->set<InvariantViolated>(true);
|
|
N = C.addTransition(OriginalState, N);
|
|
}
|
|
|
|
reportBug(Msg, Error, CK, N, Region, C.getBugReporter(), ValueExpr);
|
|
}
|
|
|
|
/// Cleaning up the program state.
|
|
void NullabilityChecker::checkDeadSymbols(SymbolReaper &SR,
|
|
CheckerContext &C) const {
|
|
ProgramStateRef State = C.getState();
|
|
NullabilityMapTy Nullabilities = State->get<NullabilityMap>();
|
|
for (NullabilityMapTy::iterator I = Nullabilities.begin(),
|
|
E = Nullabilities.end();
|
|
I != E; ++I) {
|
|
const auto *Region = I->first->getAs<SymbolicRegion>();
|
|
assert(Region && "Non-symbolic region is tracked.");
|
|
if (SR.isDead(Region->getSymbol())) {
|
|
State = State->remove<NullabilityMap>(I->first);
|
|
}
|
|
}
|
|
|
|
// When an object goes out of scope, we can free the history associated
|
|
// with any property accesses on that object
|
|
PropertyAccessesMapTy PropertyAccesses = State->get<PropertyAccessesMap>();
|
|
for (PropertyAccessesMapTy::iterator I = PropertyAccesses.begin(),
|
|
E = PropertyAccesses.end();
|
|
I != E; ++I) {
|
|
const MemRegion *ReceiverRegion = I->first.first;
|
|
if (!SR.isLiveRegion(ReceiverRegion)) {
|
|
State = State->remove<PropertyAccessesMap>(I->first);
|
|
}
|
|
}
|
|
|
|
// When one of the nonnull arguments are constrained to be null, nullability
|
|
// preconditions are violated. It is not enough to check this only when we
|
|
// actually report an error, because at that time interesting symbols might be
|
|
// reaped.
|
|
if (checkInvariantViolation(State, C.getPredecessor(), C))
|
|
return;
|
|
C.addTransition(State);
|
|
}
|
|
|
|
/// This callback triggers when a pointer is dereferenced and the analyzer does
|
|
/// not know anything about the value of that pointer. When that pointer is
|
|
/// nullable, this code emits a warning.
|
|
void NullabilityChecker::checkEvent(ImplicitNullDerefEvent Event) const {
|
|
if (Event.SinkNode->getState()->get<InvariantViolated>())
|
|
return;
|
|
|
|
const MemRegion *Region =
|
|
getTrackRegion(Event.Location, /*CheckSuperRegion=*/true);
|
|
if (!Region)
|
|
return;
|
|
|
|
ProgramStateRef State = Event.SinkNode->getState();
|
|
const NullabilityState *TrackedNullability =
|
|
State->get<NullabilityMap>(Region);
|
|
|
|
if (!TrackedNullability)
|
|
return;
|
|
|
|
if (ChecksEnabled[CK_NullableDereferenced] &&
|
|
TrackedNullability->getValue() == Nullability::Nullable) {
|
|
BugReporter &BR = *Event.BR;
|
|
// Do not suppress errors on defensive code paths, because dereferencing
|
|
// a nullable pointer is always an error.
|
|
if (Event.IsDirectDereference)
|
|
reportBug("Nullable pointer is dereferenced",
|
|
ErrorKind::NullableDereferenced, CK_NullableDereferenced,
|
|
Event.SinkNode, Region, BR);
|
|
else {
|
|
reportBug("Nullable pointer is passed to a callee that requires a "
|
|
"non-null",
|
|
ErrorKind::NullablePassedToNonnull, CK_NullableDereferenced,
|
|
Event.SinkNode, Region, BR);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Whenever we see a load from a typed memory region that's been annotated as
|
|
// 'nonnull', we want to trust the user on that and assume that it is is indeed
|
|
// non-null.
|
|
//
|
|
// We do so even if the value is known to have been assigned to null.
|
|
// The user should be warned on assigning the null value to a non-null pointer
|
|
// as opposed to warning on the later dereference of this pointer.
|
|
//
|
|
// \code
|
|
// int * _Nonnull var = 0; // we want to warn the user here...
|
|
// // . . .
|
|
// *var = 42; // ...and not here
|
|
// \endcode
|
|
void NullabilityChecker::checkLocation(SVal Location, bool IsLoad,
|
|
const Stmt *S,
|
|
CheckerContext &Context) const {
|
|
// We should care only about loads.
|
|
// The main idea is to add a constraint whenever we're loading a value from
|
|
// an annotated pointer type.
|
|
if (!IsLoad)
|
|
return;
|
|
|
|
// Annotations that we want to consider make sense only for types.
|
|
const auto *Region =
|
|
dyn_cast_or_null<TypedValueRegion>(Location.getAsRegion());
|
|
if (!Region)
|
|
return;
|
|
|
|
ProgramStateRef State = Context.getState();
|
|
|
|
auto StoredVal = State->getSVal(Region).getAs<loc::MemRegionVal>();
|
|
if (!StoredVal)
|
|
return;
|
|
|
|
Nullability NullabilityOfTheLoadedValue =
|
|
getNullabilityAnnotation(Region->getValueType());
|
|
|
|
if (NullabilityOfTheLoadedValue == Nullability::Nonnull) {
|
|
// It doesn't matter what we think about this particular pointer, it should
|
|
// be considered non-null as annotated by the developer.
|
|
if (ProgramStateRef NewState = State->assume(*StoredVal, true)) {
|
|
Context.addTransition(NewState);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Find the outermost subexpression of E that is not an implicit cast.
|
|
/// This looks through the implicit casts to _Nonnull that ARC adds to
|
|
/// return expressions of ObjC types when the return type of the function or
|
|
/// method is non-null but the express is not.
|
|
static const Expr *lookThroughImplicitCasts(const Expr *E) {
|
|
return E->IgnoreImpCasts();
|
|
}
|
|
|
|
/// This method check when nullable pointer or null value is returned from a
|
|
/// function that has nonnull return type.
|
|
void NullabilityChecker::checkPreStmt(const ReturnStmt *S,
|
|
CheckerContext &C) const {
|
|
auto RetExpr = S->getRetValue();
|
|
if (!RetExpr)
|
|
return;
|
|
|
|
if (!RetExpr->getType()->isAnyPointerType())
|
|
return;
|
|
|
|
ProgramStateRef State = C.getState();
|
|
if (State->get<InvariantViolated>())
|
|
return;
|
|
|
|
auto RetSVal = C.getSVal(S).getAs<DefinedOrUnknownSVal>();
|
|
if (!RetSVal)
|
|
return;
|
|
|
|
bool InSuppressedMethodFamily = false;
|
|
|
|
QualType RequiredRetType;
|
|
AnalysisDeclContext *DeclCtxt =
|
|
C.getLocationContext()->getAnalysisDeclContext();
|
|
const Decl *D = DeclCtxt->getDecl();
|
|
if (auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
|
|
// HACK: This is a big hammer to avoid warning when there are defensive
|
|
// nil checks in -init and -copy methods. We should add more sophisticated
|
|
// logic here to suppress on common defensive idioms but still
|
|
// warn when there is a likely problem.
|
|
ObjCMethodFamily Family = MD->getMethodFamily();
|
|
if (OMF_init == Family || OMF_copy == Family || OMF_mutableCopy == Family)
|
|
InSuppressedMethodFamily = true;
|
|
|
|
RequiredRetType = MD->getReturnType();
|
|
} else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
|
|
RequiredRetType = FD->getReturnType();
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
NullConstraint Nullness = getNullConstraint(*RetSVal, State);
|
|
|
|
Nullability RequiredNullability = getNullabilityAnnotation(RequiredRetType);
|
|
|
|
// If the returned value is null but the type of the expression
|
|
// generating it is nonnull then we will suppress the diagnostic.
|
|
// This enables explicit suppression when returning a nil literal in a
|
|
// function with a _Nonnull return type:
|
|
// return (NSString * _Nonnull)0;
|
|
Nullability RetExprTypeLevelNullability =
|
|
getNullabilityAnnotation(lookThroughImplicitCasts(RetExpr)->getType());
|
|
|
|
bool NullReturnedFromNonNull = (RequiredNullability == Nullability::Nonnull &&
|
|
Nullness == NullConstraint::IsNull);
|
|
if (ChecksEnabled[CK_NullReturnedFromNonnull] && NullReturnedFromNonNull &&
|
|
RetExprTypeLevelNullability != Nullability::Nonnull &&
|
|
!InSuppressedMethodFamily && C.getLocationContext()->inTopFrame()) {
|
|
static CheckerProgramPointTag Tag(this, "NullReturnedFromNonnull");
|
|
ExplodedNode *N = C.generateErrorNode(State, &Tag);
|
|
if (!N)
|
|
return;
|
|
|
|
SmallString<256> SBuf;
|
|
llvm::raw_svector_ostream OS(SBuf);
|
|
OS << (RetExpr->getType()->isObjCObjectPointerType() ? "nil" : "Null");
|
|
OS << " returned from a " << C.getDeclDescription(D) <<
|
|
" that is expected to return a non-null value";
|
|
reportBugIfInvariantHolds(OS.str(), ErrorKind::NilReturnedToNonnull,
|
|
CK_NullReturnedFromNonnull, N, nullptr, C,
|
|
RetExpr);
|
|
return;
|
|
}
|
|
|
|
// If null was returned from a non-null function, mark the nullability
|
|
// invariant as violated even if the diagnostic was suppressed.
|
|
if (NullReturnedFromNonNull) {
|
|
State = State->set<InvariantViolated>(true);
|
|
C.addTransition(State);
|
|
return;
|
|
}
|
|
|
|
const MemRegion *Region = getTrackRegion(*RetSVal);
|
|
if (!Region)
|
|
return;
|
|
|
|
const NullabilityState *TrackedNullability =
|
|
State->get<NullabilityMap>(Region);
|
|
if (TrackedNullability) {
|
|
Nullability TrackedNullabValue = TrackedNullability->getValue();
|
|
if (ChecksEnabled[CK_NullableReturnedFromNonnull] &&
|
|
Nullness != NullConstraint::IsNotNull &&
|
|
TrackedNullabValue == Nullability::Nullable &&
|
|
RequiredNullability == Nullability::Nonnull) {
|
|
static CheckerProgramPointTag Tag(this, "NullableReturnedFromNonnull");
|
|
ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag);
|
|
|
|
SmallString<256> SBuf;
|
|
llvm::raw_svector_ostream OS(SBuf);
|
|
OS << "Nullable pointer is returned from a " << C.getDeclDescription(D) <<
|
|
" that is expected to return a non-null value";
|
|
|
|
reportBugIfInvariantHolds(OS.str(), ErrorKind::NullableReturnedToNonnull,
|
|
CK_NullableReturnedFromNonnull, N, Region, C);
|
|
}
|
|
return;
|
|
}
|
|
if (RequiredNullability == Nullability::Nullable) {
|
|
State = State->set<NullabilityMap>(Region,
|
|
NullabilityState(RequiredNullability,
|
|
S));
|
|
C.addTransition(State);
|
|
}
|
|
}
|
|
|
|
/// This callback warns when a nullable pointer or a null value is passed to a
|
|
/// function that expects its argument to be nonnull.
|
|
void NullabilityChecker::checkPreCall(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
if (!Call.getDecl())
|
|
return;
|
|
|
|
ProgramStateRef State = C.getState();
|
|
if (State->get<InvariantViolated>())
|
|
return;
|
|
|
|
ProgramStateRef OrigState = State;
|
|
|
|
unsigned Idx = 0;
|
|
for (const ParmVarDecl *Param : Call.parameters()) {
|
|
if (Param->isParameterPack())
|
|
break;
|
|
|
|
if (Idx >= Call.getNumArgs())
|
|
break;
|
|
|
|
const Expr *ArgExpr = Call.getArgExpr(Idx);
|
|
auto ArgSVal = Call.getArgSVal(Idx++).getAs<DefinedOrUnknownSVal>();
|
|
if (!ArgSVal)
|
|
continue;
|
|
|
|
if (!Param->getType()->isAnyPointerType() &&
|
|
!Param->getType()->isReferenceType())
|
|
continue;
|
|
|
|
NullConstraint Nullness = getNullConstraint(*ArgSVal, State);
|
|
|
|
Nullability RequiredNullability =
|
|
getNullabilityAnnotation(Param->getType());
|
|
Nullability ArgExprTypeLevelNullability =
|
|
getNullabilityAnnotation(ArgExpr->getType());
|
|
|
|
unsigned ParamIdx = Param->getFunctionScopeIndex() + 1;
|
|
|
|
if (ChecksEnabled[CK_NullPassedToNonnull] &&
|
|
Nullness == NullConstraint::IsNull &&
|
|
ArgExprTypeLevelNullability != Nullability::Nonnull &&
|
|
RequiredNullability == Nullability::Nonnull &&
|
|
isDiagnosableCall(Call)) {
|
|
ExplodedNode *N = C.generateErrorNode(State);
|
|
if (!N)
|
|
return;
|
|
|
|
SmallString<256> SBuf;
|
|
llvm::raw_svector_ostream OS(SBuf);
|
|
OS << (Param->getType()->isObjCObjectPointerType() ? "nil" : "Null");
|
|
OS << " passed to a callee that requires a non-null " << ParamIdx
|
|
<< llvm::getOrdinalSuffix(ParamIdx) << " parameter";
|
|
reportBugIfInvariantHolds(OS.str(), ErrorKind::NilPassedToNonnull,
|
|
CK_NullPassedToNonnull, N, nullptr, C, ArgExpr,
|
|
/*SuppressPath=*/false);
|
|
return;
|
|
}
|
|
|
|
const MemRegion *Region = getTrackRegion(*ArgSVal);
|
|
if (!Region)
|
|
continue;
|
|
|
|
const NullabilityState *TrackedNullability =
|
|
State->get<NullabilityMap>(Region);
|
|
|
|
if (TrackedNullability) {
|
|
if (Nullness == NullConstraint::IsNotNull ||
|
|
TrackedNullability->getValue() != Nullability::Nullable)
|
|
continue;
|
|
|
|
if (ChecksEnabled[CK_NullablePassedToNonnull] &&
|
|
RequiredNullability == Nullability::Nonnull &&
|
|
isDiagnosableCall(Call)) {
|
|
ExplodedNode *N = C.addTransition(State);
|
|
SmallString<256> SBuf;
|
|
llvm::raw_svector_ostream OS(SBuf);
|
|
OS << "Nullable pointer is passed to a callee that requires a non-null "
|
|
<< ParamIdx << llvm::getOrdinalSuffix(ParamIdx) << " parameter";
|
|
reportBugIfInvariantHolds(OS.str(), ErrorKind::NullablePassedToNonnull,
|
|
CK_NullablePassedToNonnull, N, Region, C,
|
|
ArgExpr, /*SuppressPath=*/true);
|
|
return;
|
|
}
|
|
if (ChecksEnabled[CK_NullableDereferenced] &&
|
|
Param->getType()->isReferenceType()) {
|
|
ExplodedNode *N = C.addTransition(State);
|
|
reportBugIfInvariantHolds("Nullable pointer is dereferenced",
|
|
ErrorKind::NullableDereferenced,
|
|
CK_NullableDereferenced, N, Region, C,
|
|
ArgExpr, /*SuppressPath=*/true);
|
|
return;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
if (State != OrigState)
|
|
C.addTransition(State);
|
|
}
|
|
|
|
/// Suppress the nullability warnings for some functions.
|
|
void NullabilityChecker::checkPostCall(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
auto Decl = Call.getDecl();
|
|
if (!Decl)
|
|
return;
|
|
// ObjC Messages handles in a different callback.
|
|
if (Call.getKind() == CE_ObjCMessage)
|
|
return;
|
|
const FunctionType *FuncType = Decl->getFunctionType();
|
|
if (!FuncType)
|
|
return;
|
|
QualType ReturnType = FuncType->getReturnType();
|
|
if (!ReturnType->isAnyPointerType())
|
|
return;
|
|
ProgramStateRef State = C.getState();
|
|
if (State->get<InvariantViolated>())
|
|
return;
|
|
|
|
const MemRegion *Region = getTrackRegion(Call.getReturnValue());
|
|
if (!Region)
|
|
return;
|
|
|
|
// CG headers are misannotated. Do not warn for symbols that are the results
|
|
// of CG calls.
|
|
const SourceManager &SM = C.getSourceManager();
|
|
StringRef FilePath = SM.getFilename(SM.getSpellingLoc(Decl->getBeginLoc()));
|
|
if (llvm::sys::path::filename(FilePath).startswith("CG")) {
|
|
State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
|
|
C.addTransition(State);
|
|
return;
|
|
}
|
|
|
|
const NullabilityState *TrackedNullability =
|
|
State->get<NullabilityMap>(Region);
|
|
|
|
if (!TrackedNullability &&
|
|
getNullabilityAnnotation(ReturnType) == Nullability::Nullable) {
|
|
State = State->set<NullabilityMap>(Region, Nullability::Nullable);
|
|
C.addTransition(State);
|
|
}
|
|
}
|
|
|
|
static Nullability getReceiverNullability(const ObjCMethodCall &M,
|
|
ProgramStateRef State) {
|
|
if (M.isReceiverSelfOrSuper()) {
|
|
// For super and super class receivers we assume that the receiver is
|
|
// nonnull.
|
|
return Nullability::Nonnull;
|
|
}
|
|
// Otherwise look up nullability in the state.
|
|
SVal Receiver = M.getReceiverSVal();
|
|
if (auto DefOrUnknown = Receiver.getAs<DefinedOrUnknownSVal>()) {
|
|
// If the receiver is constrained to be nonnull, assume that it is nonnull
|
|
// regardless of its type.
|
|
NullConstraint Nullness = getNullConstraint(*DefOrUnknown, State);
|
|
if (Nullness == NullConstraint::IsNotNull)
|
|
return Nullability::Nonnull;
|
|
}
|
|
auto ValueRegionSVal = Receiver.getAs<loc::MemRegionVal>();
|
|
if (ValueRegionSVal) {
|
|
const MemRegion *SelfRegion = ValueRegionSVal->getRegion();
|
|
assert(SelfRegion);
|
|
|
|
const NullabilityState *TrackedSelfNullability =
|
|
State->get<NullabilityMap>(SelfRegion);
|
|
if (TrackedSelfNullability)
|
|
return TrackedSelfNullability->getValue();
|
|
}
|
|
return Nullability::Unspecified;
|
|
}
|
|
|
|
// The return value of a property access is typically a temporary value which
|
|
// will not be tracked in a persistent manner by the analyzer. We use
|
|
// evalAssume() in order to immediately record constraints on those temporaries
|
|
// at the time they are imposed (e.g. by a nil-check conditional).
|
|
ProgramStateRef NullabilityChecker::evalAssume(ProgramStateRef State, SVal Cond,
|
|
bool Assumption) const {
|
|
PropertyAccessesMapTy PropertyAccesses = State->get<PropertyAccessesMap>();
|
|
for (PropertyAccessesMapTy::iterator I = PropertyAccesses.begin(),
|
|
E = PropertyAccesses.end();
|
|
I != E; ++I) {
|
|
if (!I->second.isConstrainedNonnull) {
|
|
ConditionTruthVal IsNonNull = State->isNonNull(I->second.Value);
|
|
if (IsNonNull.isConstrainedTrue()) {
|
|
ConstrainedPropertyVal Replacement = I->second;
|
|
Replacement.isConstrainedNonnull = true;
|
|
State = State->set<PropertyAccessesMap>(I->first, Replacement);
|
|
} else if (IsNonNull.isConstrainedFalse()) {
|
|
// Space optimization: no point in tracking constrained-null cases
|
|
State = State->remove<PropertyAccessesMap>(I->first);
|
|
}
|
|
}
|
|
}
|
|
|
|
return State;
|
|
}
|
|
|
|
/// Calculate the nullability of the result of a message expr based on the
|
|
/// nullability of the receiver, the nullability of the return value, and the
|
|
/// constraints.
|
|
void NullabilityChecker::checkPostObjCMessage(const ObjCMethodCall &M,
|
|
CheckerContext &C) const {
|
|
auto Decl = M.getDecl();
|
|
if (!Decl)
|
|
return;
|
|
QualType RetType = Decl->getReturnType();
|
|
if (!RetType->isAnyPointerType())
|
|
return;
|
|
|
|
ProgramStateRef State = C.getState();
|
|
if (State->get<InvariantViolated>())
|
|
return;
|
|
|
|
const MemRegion *ReturnRegion = getTrackRegion(M.getReturnValue());
|
|
if (!ReturnRegion)
|
|
return;
|
|
|
|
auto Interface = Decl->getClassInterface();
|
|
auto Name = Interface ? Interface->getName() : "";
|
|
// In order to reduce the noise in the diagnostics generated by this checker,
|
|
// some framework and programming style based heuristics are used. These
|
|
// heuristics are for Cocoa APIs which have NS prefix.
|
|
if (Name.startswith("NS")) {
|
|
// Developers rely on dynamic invariants such as an item should be available
|
|
// in a collection, or a collection is not empty often. Those invariants can
|
|
// not be inferred by any static analysis tool. To not to bother the users
|
|
// with too many false positives, every item retrieval function should be
|
|
// ignored for collections. The instance methods of dictionaries in Cocoa
|
|
// are either item retrieval related or not interesting nullability wise.
|
|
// Using this fact, to keep the code easier to read just ignore the return
|
|
// value of every instance method of dictionaries.
|
|
if (M.isInstanceMessage() && Name.contains("Dictionary")) {
|
|
State =
|
|
State->set<NullabilityMap>(ReturnRegion, Nullability::Contradicted);
|
|
C.addTransition(State);
|
|
return;
|
|
}
|
|
// For similar reasons ignore some methods of Cocoa arrays.
|
|
StringRef FirstSelectorSlot = M.getSelector().getNameForSlot(0);
|
|
if (Name.contains("Array") &&
|
|
(FirstSelectorSlot == "firstObject" ||
|
|
FirstSelectorSlot == "lastObject")) {
|
|
State =
|
|
State->set<NullabilityMap>(ReturnRegion, Nullability::Contradicted);
|
|
C.addTransition(State);
|
|
return;
|
|
}
|
|
|
|
// Encoding related methods of string should not fail when lossless
|
|
// encodings are used. Using lossless encodings is so frequent that ignoring
|
|
// this class of methods reduced the emitted diagnostics by about 30% on
|
|
// some projects (and all of that was false positives).
|
|
if (Name.contains("String")) {
|
|
for (auto *Param : M.parameters()) {
|
|
if (Param->getName() == "encoding") {
|
|
State = State->set<NullabilityMap>(ReturnRegion,
|
|
Nullability::Contradicted);
|
|
C.addTransition(State);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const ObjCMessageExpr *Message = M.getOriginExpr();
|
|
Nullability SelfNullability = getReceiverNullability(M, State);
|
|
|
|
const NullabilityState *NullabilityOfReturn =
|
|
State->get<NullabilityMap>(ReturnRegion);
|
|
|
|
if (NullabilityOfReturn) {
|
|
// When we have a nullability tracked for the return value, the nullability
|
|
// of the expression will be the most nullable of the receiver and the
|
|
// return value.
|
|
Nullability RetValTracked = NullabilityOfReturn->getValue();
|
|
Nullability ComputedNullab =
|
|
getMostNullable(RetValTracked, SelfNullability);
|
|
if (ComputedNullab != RetValTracked &&
|
|
ComputedNullab != Nullability::Unspecified) {
|
|
const Stmt *NullabilitySource =
|
|
ComputedNullab == RetValTracked
|
|
? NullabilityOfReturn->getNullabilitySource()
|
|
: Message->getInstanceReceiver();
|
|
State = State->set<NullabilityMap>(
|
|
ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource));
|
|
C.addTransition(State);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// No tracked information. Use static type information for return value.
|
|
Nullability RetNullability = getNullabilityAnnotation(RetType);
|
|
|
|
// Properties might be computed, which means the property value could
|
|
// theoretically change between calls even in commonly-observed cases like
|
|
// this:
|
|
//
|
|
// if (foo.prop) { // ok, it's nonnull here...
|
|
// [bar doStuffWithNonnullVal:foo.prop]; // ...but what about
|
|
// here?
|
|
// }
|
|
//
|
|
// If the property is nullable-annotated, a naive analysis would lead to many
|
|
// false positives despite the presence of probably-correct nil-checks. To
|
|
// reduce the false positive rate, we maintain a history of the most recently
|
|
// observed property value. For each property access, if the prior value has
|
|
// been constrained to be not nil then we will conservatively assume that the
|
|
// next access can be inferred as nonnull.
|
|
if (RetNullability != Nullability::Nonnull &&
|
|
M.getMessageKind() == OCM_PropertyAccess && !C.wasInlined) {
|
|
bool LookupResolved = false;
|
|
if (const MemRegion *ReceiverRegion = getTrackRegion(M.getReceiverSVal())) {
|
|
if (IdentifierInfo *Ident = M.getSelector().getIdentifierInfoForSlot(0)) {
|
|
LookupResolved = true;
|
|
ObjectPropPair Key = std::make_pair(ReceiverRegion, Ident);
|
|
const ConstrainedPropertyVal *PrevPropVal =
|
|
State->get<PropertyAccessesMap>(Key);
|
|
if (PrevPropVal && PrevPropVal->isConstrainedNonnull) {
|
|
RetNullability = Nullability::Nonnull;
|
|
} else {
|
|
// If a previous property access was constrained as nonnull, we hold
|
|
// on to that constraint (effectively inferring that all subsequent
|
|
// accesses on that code path can be inferred as nonnull). If the
|
|
// previous property access was *not* constrained as nonnull, then
|
|
// let's throw it away in favor of keeping the SVal associated with
|
|
// this more recent access.
|
|
if (auto ReturnSVal =
|
|
M.getReturnValue().getAs<DefinedOrUnknownSVal>()) {
|
|
State = State->set<PropertyAccessesMap>(
|
|
Key, ConstrainedPropertyVal(*ReturnSVal));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!LookupResolved) {
|
|
// Fallback: err on the side of suppressing the false positive.
|
|
RetNullability = Nullability::Nonnull;
|
|
}
|
|
}
|
|
|
|
Nullability ComputedNullab = getMostNullable(RetNullability, SelfNullability);
|
|
if (ComputedNullab == Nullability::Nullable) {
|
|
const Stmt *NullabilitySource = ComputedNullab == RetNullability
|
|
? Message
|
|
: Message->getInstanceReceiver();
|
|
State = State->set<NullabilityMap>(
|
|
ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource));
|
|
C.addTransition(State);
|
|
}
|
|
}
|
|
|
|
/// Explicit casts are trusted. If there is a disagreement in the nullability
|
|
/// annotations in the destination and the source or '0' is casted to nonnull
|
|
/// track the value as having contraditory nullability. This will allow users to
|
|
/// suppress warnings.
|
|
void NullabilityChecker::checkPostStmt(const ExplicitCastExpr *CE,
|
|
CheckerContext &C) const {
|
|
QualType OriginType = CE->getSubExpr()->getType();
|
|
QualType DestType = CE->getType();
|
|
if (!OriginType->isAnyPointerType())
|
|
return;
|
|
if (!DestType->isAnyPointerType())
|
|
return;
|
|
|
|
ProgramStateRef State = C.getState();
|
|
if (State->get<InvariantViolated>())
|
|
return;
|
|
|
|
Nullability DestNullability = getNullabilityAnnotation(DestType);
|
|
|
|
// No explicit nullability in the destination type, so this cast does not
|
|
// change the nullability.
|
|
if (DestNullability == Nullability::Unspecified)
|
|
return;
|
|
|
|
auto RegionSVal = C.getSVal(CE).getAs<DefinedOrUnknownSVal>();
|
|
const MemRegion *Region = getTrackRegion(*RegionSVal);
|
|
if (!Region)
|
|
return;
|
|
|
|
// When 0 is converted to nonnull mark it as contradicted.
|
|
if (DestNullability == Nullability::Nonnull) {
|
|
NullConstraint Nullness = getNullConstraint(*RegionSVal, State);
|
|
if (Nullness == NullConstraint::IsNull) {
|
|
State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
|
|
C.addTransition(State);
|
|
return;
|
|
}
|
|
}
|
|
|
|
const NullabilityState *TrackedNullability =
|
|
State->get<NullabilityMap>(Region);
|
|
|
|
if (!TrackedNullability) {
|
|
if (DestNullability != Nullability::Nullable)
|
|
return;
|
|
State = State->set<NullabilityMap>(Region,
|
|
NullabilityState(DestNullability, CE));
|
|
C.addTransition(State);
|
|
return;
|
|
}
|
|
|
|
if (TrackedNullability->getValue() != DestNullability &&
|
|
TrackedNullability->getValue() != Nullability::Contradicted) {
|
|
State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
|
|
C.addTransition(State);
|
|
}
|
|
}
|
|
|
|
/// For a given statement performing a bind, attempt to syntactically
|
|
/// match the expression resulting in the bound value.
|
|
static const Expr * matchValueExprForBind(const Stmt *S) {
|
|
// For `x = e` the value expression is the right-hand side.
|
|
if (auto *BinOp = dyn_cast<BinaryOperator>(S)) {
|
|
if (BinOp->getOpcode() == BO_Assign)
|
|
return BinOp->getRHS();
|
|
}
|
|
|
|
// For `int x = e` the value expression is the initializer.
|
|
if (auto *DS = dyn_cast<DeclStmt>(S)) {
|
|
if (DS->isSingleDecl()) {
|
|
auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
|
|
if (!VD)
|
|
return nullptr;
|
|
|
|
if (const Expr *Init = VD->getInit())
|
|
return Init;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Returns true if \param S is a DeclStmt for a local variable that
|
|
/// ObjC automated reference counting initialized with zero.
|
|
static bool isARCNilInitializedLocal(CheckerContext &C, const Stmt *S) {
|
|
// We suppress diagnostics for ARC zero-initialized _Nonnull locals. This
|
|
// prevents false positives when a _Nonnull local variable cannot be
|
|
// initialized with an initialization expression:
|
|
// NSString * _Nonnull s; // no-warning
|
|
// @autoreleasepool {
|
|
// s = ...
|
|
// }
|
|
//
|
|
// FIXME: We should treat implicitly zero-initialized _Nonnull locals as
|
|
// uninitialized in Sema's UninitializedValues analysis to warn when a use of
|
|
// the zero-initialized definition will unexpectedly yield nil.
|
|
|
|
// Locals are only zero-initialized when automated reference counting
|
|
// is turned on.
|
|
if (!C.getASTContext().getLangOpts().ObjCAutoRefCount)
|
|
return false;
|
|
|
|
auto *DS = dyn_cast<DeclStmt>(S);
|
|
if (!DS || !DS->isSingleDecl())
|
|
return false;
|
|
|
|
auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
|
|
if (!VD)
|
|
return false;
|
|
|
|
// Sema only zero-initializes locals with ObjCLifetimes.
|
|
if(!VD->getType().getQualifiers().hasObjCLifetime())
|
|
return false;
|
|
|
|
const Expr *Init = VD->getInit();
|
|
assert(Init && "ObjC local under ARC without initializer");
|
|
|
|
// Return false if the local is explicitly initialized (e.g., with '= nil').
|
|
if (!isa<ImplicitValueInitExpr>(Init))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Propagate the nullability information through binds and warn when nullable
|
|
/// pointer or null symbol is assigned to a pointer with a nonnull type.
|
|
void NullabilityChecker::checkBind(SVal L, SVal V, const Stmt *S,
|
|
CheckerContext &C) const {
|
|
const TypedValueRegion *TVR =
|
|
dyn_cast_or_null<TypedValueRegion>(L.getAsRegion());
|
|
if (!TVR)
|
|
return;
|
|
|
|
QualType LocType = TVR->getValueType();
|
|
if (!LocType->isAnyPointerType())
|
|
return;
|
|
|
|
ProgramStateRef State = C.getState();
|
|
if (State->get<InvariantViolated>())
|
|
return;
|
|
|
|
auto ValDefOrUnknown = V.getAs<DefinedOrUnknownSVal>();
|
|
if (!ValDefOrUnknown)
|
|
return;
|
|
|
|
NullConstraint RhsNullness = getNullConstraint(*ValDefOrUnknown, State);
|
|
|
|
Nullability ValNullability = Nullability::Unspecified;
|
|
if (SymbolRef Sym = ValDefOrUnknown->getAsSymbol())
|
|
ValNullability = getNullabilityAnnotation(Sym->getType());
|
|
|
|
Nullability LocNullability = getNullabilityAnnotation(LocType);
|
|
|
|
// If the type of the RHS expression is nonnull, don't warn. This
|
|
// enables explicit suppression with a cast to nonnull.
|
|
Nullability ValueExprTypeLevelNullability = Nullability::Unspecified;
|
|
const Expr *ValueExpr = matchValueExprForBind(S);
|
|
if (ValueExpr) {
|
|
ValueExprTypeLevelNullability =
|
|
getNullabilityAnnotation(lookThroughImplicitCasts(ValueExpr)->getType());
|
|
}
|
|
|
|
bool NullAssignedToNonNull = (LocNullability == Nullability::Nonnull &&
|
|
RhsNullness == NullConstraint::IsNull);
|
|
if (ChecksEnabled[CK_NullPassedToNonnull] && NullAssignedToNonNull &&
|
|
ValNullability != Nullability::Nonnull &&
|
|
ValueExprTypeLevelNullability != Nullability::Nonnull &&
|
|
!isARCNilInitializedLocal(C, S)) {
|
|
static CheckerProgramPointTag Tag(this, "NullPassedToNonnull");
|
|
ExplodedNode *N = C.generateErrorNode(State, &Tag);
|
|
if (!N)
|
|
return;
|
|
|
|
|
|
const Stmt *ValueStmt = S;
|
|
if (ValueExpr)
|
|
ValueStmt = ValueExpr;
|
|
|
|
SmallString<256> SBuf;
|
|
llvm::raw_svector_ostream OS(SBuf);
|
|
OS << (LocType->isObjCObjectPointerType() ? "nil" : "Null");
|
|
OS << " assigned to a pointer which is expected to have non-null value";
|
|
reportBugIfInvariantHolds(OS.str(), ErrorKind::NilAssignedToNonnull,
|
|
CK_NullPassedToNonnull, N, nullptr, C, ValueStmt);
|
|
return;
|
|
}
|
|
|
|
// If null was returned from a non-null function, mark the nullability
|
|
// invariant as violated even if the diagnostic was suppressed.
|
|
if (NullAssignedToNonNull) {
|
|
State = State->set<InvariantViolated>(true);
|
|
C.addTransition(State);
|
|
return;
|
|
}
|
|
|
|
// Intentionally missing case: '0' is bound to a reference. It is handled by
|
|
// the DereferenceChecker.
|
|
|
|
const MemRegion *ValueRegion = getTrackRegion(*ValDefOrUnknown);
|
|
if (!ValueRegion)
|
|
return;
|
|
|
|
const NullabilityState *TrackedNullability =
|
|
State->get<NullabilityMap>(ValueRegion);
|
|
|
|
if (TrackedNullability) {
|
|
if (RhsNullness == NullConstraint::IsNotNull ||
|
|
TrackedNullability->getValue() != Nullability::Nullable)
|
|
return;
|
|
if (ChecksEnabled[CK_NullablePassedToNonnull] &&
|
|
LocNullability == Nullability::Nonnull) {
|
|
static CheckerProgramPointTag Tag(this, "NullablePassedToNonnull");
|
|
ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag);
|
|
reportBugIfInvariantHolds("Nullable pointer is assigned to a pointer "
|
|
"which is expected to have non-null value",
|
|
ErrorKind::NullableAssignedToNonnull,
|
|
CK_NullablePassedToNonnull, N, ValueRegion, C);
|
|
}
|
|
return;
|
|
}
|
|
|
|
const auto *BinOp = dyn_cast<BinaryOperator>(S);
|
|
|
|
if (ValNullability == Nullability::Nullable) {
|
|
// Trust the static information of the value more than the static
|
|
// information on the location.
|
|
const Stmt *NullabilitySource = BinOp ? BinOp->getRHS() : S;
|
|
State = State->set<NullabilityMap>(
|
|
ValueRegion, NullabilityState(ValNullability, NullabilitySource));
|
|
C.addTransition(State);
|
|
return;
|
|
}
|
|
|
|
if (LocNullability == Nullability::Nullable) {
|
|
const Stmt *NullabilitySource = BinOp ? BinOp->getLHS() : S;
|
|
State = State->set<NullabilityMap>(
|
|
ValueRegion, NullabilityState(LocNullability, NullabilitySource));
|
|
C.addTransition(State);
|
|
}
|
|
}
|
|
|
|
void NullabilityChecker::printState(raw_ostream &Out, ProgramStateRef State,
|
|
const char *NL, const char *Sep) const {
|
|
|
|
NullabilityMapTy B = State->get<NullabilityMap>();
|
|
|
|
if (State->get<InvariantViolated>())
|
|
Out << Sep << NL
|
|
<< "Nullability invariant was violated, warnings suppressed." << NL;
|
|
|
|
if (B.isEmpty())
|
|
return;
|
|
|
|
if (!State->get<InvariantViolated>())
|
|
Out << Sep << NL;
|
|
|
|
for (NullabilityMapTy::iterator I = B.begin(), E = B.end(); I != E; ++I) {
|
|
Out << I->first << " : ";
|
|
I->second.print(Out);
|
|
Out << NL;
|
|
}
|
|
}
|
|
|
|
void ento::registerNullabilityBase(CheckerManager &mgr) {
|
|
mgr.registerChecker<NullabilityChecker>();
|
|
}
|
|
|
|
bool ento::shouldRegisterNullabilityBase(const CheckerManager &mgr) {
|
|
return true;
|
|
}
|
|
|
|
#define REGISTER_CHECKER(name, trackingRequired) \
|
|
void ento::register##name##Checker(CheckerManager &mgr) { \
|
|
NullabilityChecker *checker = mgr.getChecker<NullabilityChecker>(); \
|
|
checker->ChecksEnabled[NullabilityChecker::CK_##name] = true; \
|
|
checker->CheckNames[NullabilityChecker::CK_##name] = \
|
|
mgr.getCurrentCheckerName(); \
|
|
checker->NeedTracking = checker->NeedTracking || trackingRequired; \
|
|
checker->NoDiagnoseCallsToSystemHeaders = \
|
|
checker->NoDiagnoseCallsToSystemHeaders || \
|
|
mgr.getAnalyzerOptions().getCheckerBooleanOption( \
|
|
checker, "NoDiagnoseCallsToSystemHeaders", true); \
|
|
} \
|
|
\
|
|
bool ento::shouldRegister##name##Checker(const CheckerManager &mgr) { \
|
|
return true; \
|
|
}
|
|
|
|
// The checks are likely to be turned on by default and it is possible to do
|
|
// them without tracking any nullability related information. As an optimization
|
|
// no nullability information will be tracked when only these two checks are
|
|
// enables.
|
|
REGISTER_CHECKER(NullPassedToNonnull, false)
|
|
REGISTER_CHECKER(NullReturnedFromNonnull, false)
|
|
|
|
REGISTER_CHECKER(NullableDereferenced, true)
|
|
REGISTER_CHECKER(NullablePassedToNonnull, true)
|
|
REGISTER_CHECKER(NullableReturnedFromNonnull, true)
|