leaking in ARC mode When ARC (automatic reference count) is enabled, (objective-c) block objects are automatically retained and released thus they do not leak. Without ARC, they still can leak from an expiring stack frame like other stack variables. With this commit, the static analyzer now puts a block object in an "unknown" region if ARC is enabled because it is up to the implementation to choose whether to put the object on stack initially (then move to heap when needed) or in heap directly under ARC. Therefore, the `StackAddrEscapeChecker` has no need to know specifically about ARC at all and it will not report errors on objects in "unknown" regions. Reviewed By: NoQ (Artem Dergachev) Differential Revision: https://reviews.llvm.org/D131009
433 lines
16 KiB
C++
433 lines
16 KiB
C++
//=== StackAddrEscapeChecker.cpp ----------------------------------*- C++ -*--//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines stack address leak checker, which checks if an invalid
|
|
// stack address is stored into a global or heap location. See CERT DCL30-C.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
|
|
#include "clang/StaticAnalyzer/Core/Checker.h"
|
|
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace clang;
|
|
using namespace ento;
|
|
|
|
namespace {
|
|
class StackAddrEscapeChecker
|
|
: public Checker<check::PreCall, check::PreStmt<ReturnStmt>,
|
|
check::EndFunction> {
|
|
mutable IdentifierInfo *dispatch_semaphore_tII;
|
|
mutable std::unique_ptr<BuiltinBug> BT_stackleak;
|
|
mutable std::unique_ptr<BuiltinBug> BT_returnstack;
|
|
mutable std::unique_ptr<BuiltinBug> BT_capturedstackasync;
|
|
mutable std::unique_ptr<BuiltinBug> BT_capturedstackret;
|
|
|
|
public:
|
|
enum CheckKind {
|
|
CK_StackAddrEscapeChecker,
|
|
CK_StackAddrAsyncEscapeChecker,
|
|
CK_NumCheckKinds
|
|
};
|
|
|
|
bool ChecksEnabled[CK_NumCheckKinds] = {false};
|
|
CheckerNameRef CheckNames[CK_NumCheckKinds];
|
|
|
|
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
|
|
void checkPreStmt(const ReturnStmt *RS, CheckerContext &C) const;
|
|
void checkEndFunction(const ReturnStmt *RS, CheckerContext &Ctx) const;
|
|
|
|
private:
|
|
void checkReturnedBlockCaptures(const BlockDataRegion &B,
|
|
CheckerContext &C) const;
|
|
void checkAsyncExecutedBlockCaptures(const BlockDataRegion &B,
|
|
CheckerContext &C) const;
|
|
void EmitStackError(CheckerContext &C, const MemRegion *R,
|
|
const Expr *RetE) const;
|
|
bool isSemaphoreCaptured(const BlockDecl &B) const;
|
|
static SourceRange genName(raw_ostream &os, const MemRegion *R,
|
|
ASTContext &Ctx);
|
|
static SmallVector<const MemRegion *, 4>
|
|
getCapturedStackRegions(const BlockDataRegion &B, CheckerContext &C);
|
|
static bool isNotInCurrentFrame(const MemRegion *R, CheckerContext &C);
|
|
};
|
|
} // namespace
|
|
|
|
SourceRange StackAddrEscapeChecker::genName(raw_ostream &os, const MemRegion *R,
|
|
ASTContext &Ctx) {
|
|
// Get the base region, stripping away fields and elements.
|
|
R = R->getBaseRegion();
|
|
SourceManager &SM = Ctx.getSourceManager();
|
|
SourceRange range;
|
|
os << "Address of ";
|
|
|
|
// Check if the region is a compound literal.
|
|
if (const auto *CR = dyn_cast<CompoundLiteralRegion>(R)) {
|
|
const CompoundLiteralExpr *CL = CR->getLiteralExpr();
|
|
os << "stack memory associated with a compound literal "
|
|
"declared on line "
|
|
<< SM.getExpansionLineNumber(CL->getBeginLoc()) << " returned to caller";
|
|
range = CL->getSourceRange();
|
|
} else if (const auto *AR = dyn_cast<AllocaRegion>(R)) {
|
|
const Expr *ARE = AR->getExpr();
|
|
SourceLocation L = ARE->getBeginLoc();
|
|
range = ARE->getSourceRange();
|
|
os << "stack memory allocated by call to alloca() on line "
|
|
<< SM.getExpansionLineNumber(L);
|
|
} else if (const auto *BR = dyn_cast<BlockDataRegion>(R)) {
|
|
const BlockDecl *BD = BR->getCodeRegion()->getDecl();
|
|
SourceLocation L = BD->getBeginLoc();
|
|
range = BD->getSourceRange();
|
|
os << "stack-allocated block declared on line "
|
|
<< SM.getExpansionLineNumber(L);
|
|
} else if (const auto *VR = dyn_cast<VarRegion>(R)) {
|
|
os << "stack memory associated with local variable '" << VR->getString()
|
|
<< '\'';
|
|
range = VR->getDecl()->getSourceRange();
|
|
} else if (const auto *TOR = dyn_cast<CXXTempObjectRegion>(R)) {
|
|
QualType Ty = TOR->getValueType().getLocalUnqualifiedType();
|
|
os << "stack memory associated with temporary object of type '";
|
|
Ty.print(os, Ctx.getPrintingPolicy());
|
|
os << "'";
|
|
range = TOR->getExpr()->getSourceRange();
|
|
} else {
|
|
llvm_unreachable("Invalid region in ReturnStackAddressChecker.");
|
|
}
|
|
|
|
return range;
|
|
}
|
|
|
|
bool StackAddrEscapeChecker::isNotInCurrentFrame(const MemRegion *R,
|
|
CheckerContext &C) {
|
|
const StackSpaceRegion *S = cast<StackSpaceRegion>(R->getMemorySpace());
|
|
return S->getStackFrame() != C.getStackFrame();
|
|
}
|
|
|
|
bool StackAddrEscapeChecker::isSemaphoreCaptured(const BlockDecl &B) const {
|
|
if (!dispatch_semaphore_tII)
|
|
dispatch_semaphore_tII = &B.getASTContext().Idents.get("dispatch_semaphore_t");
|
|
for (const auto &C : B.captures()) {
|
|
const auto *T = C.getVariable()->getType()->getAs<TypedefType>();
|
|
if (T && T->getDecl()->getIdentifier() == dispatch_semaphore_tII)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
SmallVector<const MemRegion *, 4>
|
|
StackAddrEscapeChecker::getCapturedStackRegions(const BlockDataRegion &B,
|
|
CheckerContext &C) {
|
|
SmallVector<const MemRegion *, 4> Regions;
|
|
BlockDataRegion::referenced_vars_iterator I = B.referenced_vars_begin();
|
|
BlockDataRegion::referenced_vars_iterator E = B.referenced_vars_end();
|
|
for (; I != E; ++I) {
|
|
SVal Val = C.getState()->getSVal(I.getCapturedRegion());
|
|
const MemRegion *Region = Val.getAsRegion();
|
|
if (Region && isa<StackSpaceRegion>(Region->getMemorySpace()))
|
|
Regions.push_back(Region);
|
|
}
|
|
return Regions;
|
|
}
|
|
|
|
void StackAddrEscapeChecker::EmitStackError(CheckerContext &C,
|
|
const MemRegion *R,
|
|
const Expr *RetE) const {
|
|
ExplodedNode *N = C.generateNonFatalErrorNode();
|
|
if (!N)
|
|
return;
|
|
if (!BT_returnstack)
|
|
BT_returnstack = std::make_unique<BuiltinBug>(
|
|
CheckNames[CK_StackAddrEscapeChecker],
|
|
"Return of address to stack-allocated memory");
|
|
// Generate a report for this bug.
|
|
SmallString<128> buf;
|
|
llvm::raw_svector_ostream os(buf);
|
|
SourceRange range = genName(os, R, C.getASTContext());
|
|
os << " returned to caller";
|
|
auto report =
|
|
std::make_unique<PathSensitiveBugReport>(*BT_returnstack, os.str(), N);
|
|
report->addRange(RetE->getSourceRange());
|
|
if (range.isValid())
|
|
report->addRange(range);
|
|
C.emitReport(std::move(report));
|
|
}
|
|
|
|
void StackAddrEscapeChecker::checkAsyncExecutedBlockCaptures(
|
|
const BlockDataRegion &B, CheckerContext &C) const {
|
|
// There is a not-too-uncommon idiom
|
|
// where a block passed to dispatch_async captures a semaphore
|
|
// and then the thread (which called dispatch_async) is blocked on waiting
|
|
// for the completion of the execution of the block
|
|
// via dispatch_semaphore_wait. To avoid false-positives (for now)
|
|
// we ignore all the blocks which have captured
|
|
// a variable of the type "dispatch_semaphore_t".
|
|
if (isSemaphoreCaptured(*B.getDecl()))
|
|
return;
|
|
for (const MemRegion *Region : getCapturedStackRegions(B, C)) {
|
|
// The block passed to dispatch_async may capture another block
|
|
// created on the stack. However, there is no leak in this situaton,
|
|
// no matter if ARC or no ARC is enabled:
|
|
// dispatch_async copies the passed "outer" block (via Block_copy)
|
|
// and if the block has captured another "inner" block,
|
|
// the "inner" block will be copied as well.
|
|
if (isa<BlockDataRegion>(Region))
|
|
continue;
|
|
ExplodedNode *N = C.generateNonFatalErrorNode();
|
|
if (!N)
|
|
continue;
|
|
if (!BT_capturedstackasync)
|
|
BT_capturedstackasync = std::make_unique<BuiltinBug>(
|
|
CheckNames[CK_StackAddrAsyncEscapeChecker],
|
|
"Address of stack-allocated memory is captured");
|
|
SmallString<128> Buf;
|
|
llvm::raw_svector_ostream Out(Buf);
|
|
SourceRange Range = genName(Out, Region, C.getASTContext());
|
|
Out << " is captured by an asynchronously-executed block";
|
|
auto Report = std::make_unique<PathSensitiveBugReport>(
|
|
*BT_capturedstackasync, Out.str(), N);
|
|
if (Range.isValid())
|
|
Report->addRange(Range);
|
|
C.emitReport(std::move(Report));
|
|
}
|
|
}
|
|
|
|
void StackAddrEscapeChecker::checkReturnedBlockCaptures(
|
|
const BlockDataRegion &B, CheckerContext &C) const {
|
|
for (const MemRegion *Region : getCapturedStackRegions(B, C)) {
|
|
if (isNotInCurrentFrame(Region, C))
|
|
continue;
|
|
ExplodedNode *N = C.generateNonFatalErrorNode();
|
|
if (!N)
|
|
continue;
|
|
if (!BT_capturedstackret)
|
|
BT_capturedstackret = std::make_unique<BuiltinBug>(
|
|
CheckNames[CK_StackAddrEscapeChecker],
|
|
"Address of stack-allocated memory is captured");
|
|
SmallString<128> Buf;
|
|
llvm::raw_svector_ostream Out(Buf);
|
|
SourceRange Range = genName(Out, Region, C.getASTContext());
|
|
Out << " is captured by a returned block";
|
|
auto Report = std::make_unique<PathSensitiveBugReport>(*BT_capturedstackret,
|
|
Out.str(), N);
|
|
if (Range.isValid())
|
|
Report->addRange(Range);
|
|
C.emitReport(std::move(Report));
|
|
}
|
|
}
|
|
|
|
void StackAddrEscapeChecker::checkPreCall(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
if (!ChecksEnabled[CK_StackAddrAsyncEscapeChecker])
|
|
return;
|
|
if (!Call.isGlobalCFunction("dispatch_after") &&
|
|
!Call.isGlobalCFunction("dispatch_async"))
|
|
return;
|
|
for (unsigned Idx = 0, NumArgs = Call.getNumArgs(); Idx < NumArgs; ++Idx) {
|
|
if (const BlockDataRegion *B = dyn_cast_or_null<BlockDataRegion>(
|
|
Call.getArgSVal(Idx).getAsRegion()))
|
|
checkAsyncExecutedBlockCaptures(*B, C);
|
|
}
|
|
}
|
|
|
|
void StackAddrEscapeChecker::checkPreStmt(const ReturnStmt *RS,
|
|
CheckerContext &C) const {
|
|
if (!ChecksEnabled[CK_StackAddrEscapeChecker])
|
|
return;
|
|
|
|
const Expr *RetE = RS->getRetValue();
|
|
if (!RetE)
|
|
return;
|
|
RetE = RetE->IgnoreParens();
|
|
|
|
SVal V = C.getSVal(RetE);
|
|
const MemRegion *R = V.getAsRegion();
|
|
if (!R)
|
|
return;
|
|
|
|
if (const BlockDataRegion *B = dyn_cast<BlockDataRegion>(R))
|
|
checkReturnedBlockCaptures(*B, C);
|
|
|
|
if (!isa<StackSpaceRegion>(R->getMemorySpace()) || isNotInCurrentFrame(R, C))
|
|
return;
|
|
|
|
// Returning a record by value is fine. (In this case, the returned
|
|
// expression will be a copy-constructor, possibly wrapped in an
|
|
// ExprWithCleanups node.)
|
|
if (const ExprWithCleanups *Cleanup = dyn_cast<ExprWithCleanups>(RetE))
|
|
RetE = Cleanup->getSubExpr();
|
|
if (isa<CXXConstructExpr>(RetE) && RetE->getType()->isRecordType())
|
|
return;
|
|
|
|
// The CK_CopyAndAutoreleaseBlockObject cast causes the block to be copied
|
|
// so the stack address is not escaping here.
|
|
if (const auto *ICE = dyn_cast<ImplicitCastExpr>(RetE)) {
|
|
if (isa<BlockDataRegion>(R) &&
|
|
ICE->getCastKind() == CK_CopyAndAutoreleaseBlockObject) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
EmitStackError(C, R, RetE);
|
|
}
|
|
|
|
void StackAddrEscapeChecker::checkEndFunction(const ReturnStmt *RS,
|
|
CheckerContext &Ctx) const {
|
|
if (!ChecksEnabled[CK_StackAddrEscapeChecker])
|
|
return;
|
|
|
|
ProgramStateRef State = Ctx.getState();
|
|
|
|
// Iterate over all bindings to global variables and see if it contains
|
|
// a memory region in the stack space.
|
|
class CallBack : public StoreManager::BindingsHandler {
|
|
private:
|
|
CheckerContext &Ctx;
|
|
const StackFrameContext *PoppedFrame;
|
|
|
|
/// Look for stack variables referring to popped stack variables.
|
|
/// Returns true only if it found some dangling stack variables
|
|
/// referred by an other stack variable from different stack frame.
|
|
bool checkForDanglingStackVariable(const MemRegion *Referrer,
|
|
const MemRegion *Referred) {
|
|
const auto *ReferrerMemSpace =
|
|
Referrer->getMemorySpace()->getAs<StackSpaceRegion>();
|
|
const auto *ReferredMemSpace =
|
|
Referred->getMemorySpace()->getAs<StackSpaceRegion>();
|
|
|
|
if (!ReferrerMemSpace || !ReferredMemSpace)
|
|
return false;
|
|
|
|
const auto *ReferrerFrame = ReferrerMemSpace->getStackFrame();
|
|
const auto *ReferredFrame = ReferredMemSpace->getStackFrame();
|
|
|
|
if (ReferrerMemSpace && ReferredMemSpace) {
|
|
if (ReferredFrame == PoppedFrame &&
|
|
ReferrerFrame->isParentOf(PoppedFrame)) {
|
|
V.emplace_back(Referrer, Referred);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
public:
|
|
SmallVector<std::pair<const MemRegion *, const MemRegion *>, 10> V;
|
|
|
|
CallBack(CheckerContext &CC) : Ctx(CC), PoppedFrame(CC.getStackFrame()) {}
|
|
|
|
bool HandleBinding(StoreManager &SMgr, Store S, const MemRegion *Region,
|
|
SVal Val) override {
|
|
const MemRegion *VR = Val.getAsRegion();
|
|
if (!VR)
|
|
return true;
|
|
|
|
if (checkForDanglingStackVariable(Region, VR))
|
|
return true;
|
|
|
|
// Check the globals for the same.
|
|
if (!isa<GlobalsSpaceRegion>(Region->getMemorySpace()))
|
|
return true;
|
|
if (VR && VR->hasStackStorage() && !isNotInCurrentFrame(VR, Ctx))
|
|
V.emplace_back(Region, VR);
|
|
return true;
|
|
}
|
|
};
|
|
|
|
CallBack Cb(Ctx);
|
|
State->getStateManager().getStoreManager().iterBindings(State->getStore(),
|
|
Cb);
|
|
|
|
if (Cb.V.empty())
|
|
return;
|
|
|
|
// Generate an error node.
|
|
ExplodedNode *N = Ctx.generateNonFatalErrorNode(State);
|
|
if (!N)
|
|
return;
|
|
|
|
if (!BT_stackleak)
|
|
BT_stackleak = std::make_unique<BuiltinBug>(
|
|
CheckNames[CK_StackAddrEscapeChecker],
|
|
"Stack address stored into global variable",
|
|
"Stack address was saved into a global variable. "
|
|
"This is dangerous because the address will become "
|
|
"invalid after returning from the function");
|
|
|
|
for (const auto &P : Cb.V) {
|
|
const MemRegion *Referrer = P.first;
|
|
const MemRegion *Referred = P.second;
|
|
|
|
// Generate a report for this bug.
|
|
const StringRef CommonSuffix =
|
|
"upon returning to the caller. This will be a dangling reference";
|
|
SmallString<128> Buf;
|
|
llvm::raw_svector_ostream Out(Buf);
|
|
const SourceRange Range = genName(Out, Referred, Ctx.getASTContext());
|
|
|
|
if (isa<CXXTempObjectRegion>(Referrer)) {
|
|
Out << " is still referred to by a temporary object on the stack "
|
|
<< CommonSuffix;
|
|
auto Report =
|
|
std::make_unique<PathSensitiveBugReport>(*BT_stackleak, Out.str(), N);
|
|
Ctx.emitReport(std::move(Report));
|
|
return;
|
|
}
|
|
|
|
const StringRef ReferrerMemorySpace = [](const MemSpaceRegion *Space) {
|
|
if (isa<StaticGlobalSpaceRegion>(Space))
|
|
return "static";
|
|
if (isa<GlobalsSpaceRegion>(Space))
|
|
return "global";
|
|
assert(isa<StackSpaceRegion>(Space));
|
|
return "stack";
|
|
}(Referrer->getMemorySpace());
|
|
|
|
// This cast supposed to succeed.
|
|
const VarRegion *ReferrerVar = cast<VarRegion>(Referrer->getBaseRegion());
|
|
const std::string ReferrerVarName =
|
|
ReferrerVar->getDecl()->getDeclName().getAsString();
|
|
|
|
Out << " is still referred to by the " << ReferrerMemorySpace
|
|
<< " variable '" << ReferrerVarName << "' " << CommonSuffix;
|
|
auto Report =
|
|
std::make_unique<PathSensitiveBugReport>(*BT_stackleak, Out.str(), N);
|
|
if (Range.isValid())
|
|
Report->addRange(Range);
|
|
|
|
Ctx.emitReport(std::move(Report));
|
|
}
|
|
}
|
|
|
|
void ento::registerStackAddrEscapeBase(CheckerManager &mgr) {
|
|
mgr.registerChecker<StackAddrEscapeChecker>();
|
|
}
|
|
|
|
bool ento::shouldRegisterStackAddrEscapeBase(const CheckerManager &mgr) {
|
|
return true;
|
|
}
|
|
|
|
#define REGISTER_CHECKER(name) \
|
|
void ento::register##name(CheckerManager &Mgr) { \
|
|
StackAddrEscapeChecker *Chk = Mgr.getChecker<StackAddrEscapeChecker>(); \
|
|
Chk->ChecksEnabled[StackAddrEscapeChecker::CK_##name] = true; \
|
|
Chk->CheckNames[StackAddrEscapeChecker::CK_##name] = \
|
|
Mgr.getCurrentCheckerName(); \
|
|
} \
|
|
\
|
|
bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
|
|
|
|
REGISTER_CHECKER(StackAddrEscapeChecker)
|
|
REGISTER_CHECKER(StackAddrAsyncEscapeChecker)
|