Files
clang-p2996/compiler-rt/lib/builtins/cpu_model.c
Alex Brachet 70ab8e8ad9 [compiler-rt] Move up undefined macro checks
Previously HWCAP_ATOMIC and others were being used before checking if
they were defined. This moves up all the ifndef checks to define these
macros if they are not yet defined.

Differential Revision: https://reviews.llvm.org/D141285
2023-01-09 15:54:11 +00:00

1355 lines
37 KiB
C

//===-- cpu_model.c - Support for __cpu_model builtin ------------*- C -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is based on LLVM's lib/Support/Host.cpp.
// It implements the operating system Host concept and builtin
// __cpu_model for the compiler_rt library for x86 and
// __aarch64_have_lse_atomics, __aarch64_cpu_features for AArch64.
//
//===----------------------------------------------------------------------===//
#ifndef __has_attribute
#define __has_attribute(attr) 0
#endif
#if __has_attribute(constructor)
#if __GNUC__ >= 9
// Ordinarily init priorities below 101 are disallowed as they are reserved for the
// implementation. However, we are the implementation, so silence the diagnostic,
// since it doesn't apply to us.
#pragma GCC diagnostic ignored "-Wprio-ctor-dtor"
#endif
// We're choosing init priority 90 to force our constructors to run before any
// constructors in the end user application (starting at priority 101). This value
// matches the libgcc choice for the same functions.
#define CONSTRUCTOR_ATTRIBUTE __attribute__((constructor(90)))
#else
// FIXME: For MSVC, we should make a function pointer global in .CRT$X?? so that
// this runs during initialization.
#define CONSTRUCTOR_ATTRIBUTE
#endif
#if (defined(__i386__) || defined(_M_IX86) || defined(__x86_64__) || \
defined(_M_X64)) && \
(defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER))
#include <assert.h>
#define bool int
#define true 1
#define false 0
#ifdef _MSC_VER
#include <intrin.h>
#endif
enum VendorSignatures {
SIG_INTEL = 0x756e6547, // Genu
SIG_AMD = 0x68747541, // Auth
};
enum ProcessorVendors {
VENDOR_INTEL = 1,
VENDOR_AMD,
VENDOR_OTHER,
VENDOR_MAX
};
enum ProcessorTypes {
INTEL_BONNELL = 1,
INTEL_CORE2,
INTEL_COREI7,
AMDFAM10H,
AMDFAM15H,
INTEL_SILVERMONT,
INTEL_KNL,
AMD_BTVER1,
AMD_BTVER2,
AMDFAM17H,
INTEL_KNM,
INTEL_GOLDMONT,
INTEL_GOLDMONT_PLUS,
INTEL_TREMONT,
AMDFAM19H,
ZHAOXIN_FAM7H,
INTEL_SIERRAFOREST,
INTEL_GRANDRIDGE,
CPU_TYPE_MAX
};
enum ProcessorSubtypes {
INTEL_COREI7_NEHALEM = 1,
INTEL_COREI7_WESTMERE,
INTEL_COREI7_SANDYBRIDGE,
AMDFAM10H_BARCELONA,
AMDFAM10H_SHANGHAI,
AMDFAM10H_ISTANBUL,
AMDFAM15H_BDVER1,
AMDFAM15H_BDVER2,
AMDFAM15H_BDVER3,
AMDFAM15H_BDVER4,
AMDFAM17H_ZNVER1,
INTEL_COREI7_IVYBRIDGE,
INTEL_COREI7_HASWELL,
INTEL_COREI7_BROADWELL,
INTEL_COREI7_SKYLAKE,
INTEL_COREI7_SKYLAKE_AVX512,
INTEL_COREI7_CANNONLAKE,
INTEL_COREI7_ICELAKE_CLIENT,
INTEL_COREI7_ICELAKE_SERVER,
AMDFAM17H_ZNVER2,
INTEL_COREI7_CASCADELAKE,
INTEL_COREI7_TIGERLAKE,
INTEL_COREI7_COOPERLAKE,
INTEL_COREI7_SAPPHIRERAPIDS,
INTEL_COREI7_ALDERLAKE,
AMDFAM19H_ZNVER3,
INTEL_COREI7_ROCKETLAKE,
ZHAOXIN_FAM7H_LUJIAZUI,
AMDFAM19H_ZNVER4,
INTEL_COREI7_GRANITERAPIDS,
CPU_SUBTYPE_MAX
};
enum ProcessorFeatures {
FEATURE_CMOV = 0,
FEATURE_MMX,
FEATURE_POPCNT,
FEATURE_SSE,
FEATURE_SSE2,
FEATURE_SSE3,
FEATURE_SSSE3,
FEATURE_SSE4_1,
FEATURE_SSE4_2,
FEATURE_AVX,
FEATURE_AVX2,
FEATURE_SSE4_A,
FEATURE_FMA4,
FEATURE_XOP,
FEATURE_FMA,
FEATURE_AVX512F,
FEATURE_BMI,
FEATURE_BMI2,
FEATURE_AES,
FEATURE_PCLMUL,
FEATURE_AVX512VL,
FEATURE_AVX512BW,
FEATURE_AVX512DQ,
FEATURE_AVX512CD,
FEATURE_AVX512ER,
FEATURE_AVX512PF,
FEATURE_AVX512VBMI,
FEATURE_AVX512IFMA,
FEATURE_AVX5124VNNIW,
FEATURE_AVX5124FMAPS,
FEATURE_AVX512VPOPCNTDQ,
FEATURE_AVX512VBMI2,
FEATURE_GFNI,
FEATURE_VPCLMULQDQ,
FEATURE_AVX512VNNI,
FEATURE_AVX512BITALG,
FEATURE_AVX512BF16,
FEATURE_AVX512VP2INTERSECT,
CPU_FEATURE_MAX
};
// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
// support. Consequently, for i386, the presence of CPUID is checked first
// via the corresponding eflags bit.
static bool isCpuIdSupported(void) {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__i386__)
int __cpuid_supported;
__asm__(" pushfl\n"
" popl %%eax\n"
" movl %%eax,%%ecx\n"
" xorl $0x00200000,%%eax\n"
" pushl %%eax\n"
" popfl\n"
" pushfl\n"
" popl %%eax\n"
" movl $0,%0\n"
" cmpl %%eax,%%ecx\n"
" je 1f\n"
" movl $1,%0\n"
"1:"
: "=r"(__cpuid_supported)
:
: "eax", "ecx");
if (!__cpuid_supported)
return false;
#endif
return true;
#endif
return true;
}
// This code is copied from lib/Support/Host.cpp.
// Changes to either file should be mirrored in the other.
/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
/// the specified arguments. If we can't run cpuid on the host, return true.
static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
unsigned *rECX, unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__x86_64__)
// gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
// FIXME: should we save this for Clang?
__asm__("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value));
return false;
#elif defined(__i386__)
__asm__("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value));
return false;
#else
return true;
#endif
#elif defined(_MSC_VER)
// The MSVC intrinsic is portable across x86 and x64.
int registers[4];
__cpuid(registers, value);
*rEAX = registers[0];
*rEBX = registers[1];
*rECX = registers[2];
*rEDX = registers[3];
return false;
#else
return true;
#endif
}
/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
/// the 4 values in the specified arguments. If we can't run cpuid on the host,
/// return true.
static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__x86_64__)
// gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
// FIXME: should we save this for Clang?
__asm__("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value), "c"(subleaf));
return false;
#elif defined(__i386__)
__asm__("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value), "c"(subleaf));
return false;
#else
return true;
#endif
#elif defined(_MSC_VER)
int registers[4];
__cpuidex(registers, value, subleaf);
*rEAX = registers[0];
*rEBX = registers[1];
*rECX = registers[2];
*rEDX = registers[3];
return false;
#else
return true;
#endif
}
// Read control register 0 (XCR0). Used to detect features such as AVX.
static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
// Check xgetbv; this uses a .byte sequence instead of the instruction
// directly because older assemblers do not include support for xgetbv and
// there is no easy way to conditionally compile based on the assembler used.
__asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
return false;
#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
*rEAX = Result;
*rEDX = Result >> 32;
return false;
#else
return true;
#endif
}
static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
unsigned *Model) {
*Family = (EAX >> 8) & 0xf; // Bits 8 - 11
*Model = (EAX >> 4) & 0xf; // Bits 4 - 7
if (*Family == 6 || *Family == 0xf) {
if (*Family == 0xf)
// Examine extended family ID if family ID is F.
*Family += (EAX >> 20) & 0xff; // Bits 20 - 27
// Examine extended model ID if family ID is 6 or F.
*Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
}
}
static const char *
getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
const unsigned *Features,
unsigned *Type, unsigned *Subtype) {
#define testFeature(F) \
(Features[F / 32] & (1 << (F % 32))) != 0
// We select CPU strings to match the code in Host.cpp, but we don't use them
// in compiler-rt.
const char *CPU = 0;
switch (Family) {
case 6:
switch (Model) {
case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
// processor, Intel Core 2 Quad processor, Intel Core 2 Quad
// mobile processor, Intel Core 2 Extreme processor, Intel
// Pentium Dual-Core processor, Intel Xeon processor, model
// 0Fh. All processors are manufactured using the 65 nm process.
case 0x16: // Intel Celeron processor model 16h. All processors are
// manufactured using the 65 nm process
CPU = "core2";
*Type = INTEL_CORE2;
break;
case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
// 17h. All processors are manufactured using the 45 nm process.
//
// 45nm: Penryn , Wolfdale, Yorkfield (XE)
case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
// the 45 nm process.
CPU = "penryn";
*Type = INTEL_CORE2;
break;
case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
// processors are manufactured using the 45 nm process.
case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.
// As found in a Summer 2010 model iMac.
case 0x1f:
case 0x2e: // Nehalem EX
CPU = "nehalem";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_NEHALEM;
break;
case 0x25: // Intel Core i7, laptop version.
case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
// processors are manufactured using the 32 nm process.
case 0x2f: // Westmere EX
CPU = "westmere";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_WESTMERE;
break;
case 0x2a: // Intel Core i7 processor. All processors are manufactured
// using the 32 nm process.
case 0x2d:
CPU = "sandybridge";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_SANDYBRIDGE;
break;
case 0x3a:
case 0x3e: // Ivy Bridge EP
CPU = "ivybridge";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_IVYBRIDGE;
break;
// Haswell:
case 0x3c:
case 0x3f:
case 0x45:
case 0x46:
CPU = "haswell";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_HASWELL;
break;
// Broadwell:
case 0x3d:
case 0x47:
case 0x4f:
case 0x56:
CPU = "broadwell";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_BROADWELL;
break;
// Skylake:
case 0x4e: // Skylake mobile
case 0x5e: // Skylake desktop
case 0x8e: // Kaby Lake mobile
case 0x9e: // Kaby Lake desktop
case 0xa5: // Comet Lake-H/S
case 0xa6: // Comet Lake-U
CPU = "skylake";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_SKYLAKE;
break;
// Rocketlake:
case 0xa7:
CPU = "rocketlake";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_ROCKETLAKE;
break;
// Skylake Xeon:
case 0x55:
*Type = INTEL_COREI7;
if (testFeature(FEATURE_AVX512BF16)) {
CPU = "cooperlake";
*Subtype = INTEL_COREI7_COOPERLAKE;
} else if (testFeature(FEATURE_AVX512VNNI)) {
CPU = "cascadelake";
*Subtype = INTEL_COREI7_CASCADELAKE;
} else {
CPU = "skylake-avx512";
*Subtype = INTEL_COREI7_SKYLAKE_AVX512;
}
break;
// Cannonlake:
case 0x66:
CPU = "cannonlake";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_CANNONLAKE;
break;
// Icelake:
case 0x7d:
case 0x7e:
CPU = "icelake-client";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_ICELAKE_CLIENT;
break;
// Tigerlake:
case 0x8c:
case 0x8d:
CPU = "tigerlake";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_TIGERLAKE;
break;
// Alderlake:
case 0x97:
case 0x9a:
// Raptorlake:
case 0xb7:
// Meteorlake:
case 0xaa:
case 0xac:
CPU = "alderlake";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_ALDERLAKE;
break;
// Icelake Xeon:
case 0x6a:
case 0x6c:
CPU = "icelake-server";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_ICELAKE_SERVER;
break;
// Emerald Rapids:
case 0xcf:
// Sapphire Rapids:
case 0x8f:
CPU = "sapphirerapids";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_SAPPHIRERAPIDS;
break;
// Granite Rapids:
case 0xae:
case 0xad:
CPU = "graniterapids";
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_GRANITERAPIDS;
break;
case 0x1c: // Most 45 nm Intel Atom processors
case 0x26: // 45 nm Atom Lincroft
case 0x27: // 32 nm Atom Medfield
case 0x35: // 32 nm Atom Midview
case 0x36: // 32 nm Atom Midview
CPU = "bonnell";
*Type = INTEL_BONNELL;
break;
// Atom Silvermont codes from the Intel software optimization guide.
case 0x37:
case 0x4a:
case 0x4d:
case 0x5a:
case 0x5d:
case 0x4c: // really airmont
CPU = "silvermont";
*Type = INTEL_SILVERMONT;
break;
// Goldmont:
case 0x5c: // Apollo Lake
case 0x5f: // Denverton
CPU = "goldmont";
*Type = INTEL_GOLDMONT;
break; // "goldmont"
case 0x7a:
CPU = "goldmont-plus";
*Type = INTEL_GOLDMONT_PLUS;
break;
case 0x86:
CPU = "tremont";
*Type = INTEL_TREMONT;
break;
// Sierraforest:
case 0xaf:
CPU = "sierraforest";
*Type = INTEL_SIERRAFOREST;
break;
// Grandridge:
case 0xb6:
CPU = "grandridge";
*Type = INTEL_GRANDRIDGE;
break;
case 0x57:
CPU = "knl";
*Type = INTEL_KNL;
break;
case 0x85:
CPU = "knm";
*Type = INTEL_KNM;
break;
default: // Unknown family 6 CPU.
break;
}
break;
default:
break; // Unknown.
}
return CPU;
}
static const char *
getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model,
const unsigned *Features,
unsigned *Type, unsigned *Subtype) {
// We select CPU strings to match the code in Host.cpp, but we don't use them
// in compiler-rt.
const char *CPU = 0;
switch (Family) {
case 16:
CPU = "amdfam10";
*Type = AMDFAM10H;
switch (Model) {
case 2:
*Subtype = AMDFAM10H_BARCELONA;
break;
case 4:
*Subtype = AMDFAM10H_SHANGHAI;
break;
case 8:
*Subtype = AMDFAM10H_ISTANBUL;
break;
}
break;
case 20:
CPU = "btver1";
*Type = AMD_BTVER1;
break;
case 21:
CPU = "bdver1";
*Type = AMDFAM15H;
if (Model >= 0x60 && Model <= 0x7f) {
CPU = "bdver4";
*Subtype = AMDFAM15H_BDVER4;
break; // 60h-7Fh: Excavator
}
if (Model >= 0x30 && Model <= 0x3f) {
CPU = "bdver3";
*Subtype = AMDFAM15H_BDVER3;
break; // 30h-3Fh: Steamroller
}
if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) {
CPU = "bdver2";
*Subtype = AMDFAM15H_BDVER2;
break; // 02h, 10h-1Fh: Piledriver
}
if (Model <= 0x0f) {
*Subtype = AMDFAM15H_BDVER1;
break; // 00h-0Fh: Bulldozer
}
break;
case 22:
CPU = "btver2";
*Type = AMD_BTVER2;
break;
case 23:
CPU = "znver1";
*Type = AMDFAM17H;
if ((Model >= 0x30 && Model <= 0x3f) || Model == 0x71) {
CPU = "znver2";
*Subtype = AMDFAM17H_ZNVER2;
break; // 30h-3fh, 71h: Zen2
}
if (Model <= 0x0f) {
*Subtype = AMDFAM17H_ZNVER1;
break; // 00h-0Fh: Zen1
}
break;
case 25:
CPU = "znver3";
*Type = AMDFAM19H;
if (Model <= 0x0f || (Model >= 0x20 && Model <= 0x5f)) {
// Family 19h Models 00h-0Fh - Zen3
// Family 19h Models 20h-2Fh - Zen3
// Family 19h Models 30h-3Fh - Zen3
// Family 19h Models 40h-4Fh - Zen3+
// Family 19h Models 50h-5Fh - Zen3+
*Subtype = AMDFAM19H_ZNVER3;
break;
}
if ((Model >= 0x10 && Model <= 0x1f) ||
(Model >= 0x60 && Model <= 0x74) ||
(Model >= 0x78 && Model <= 0x7b) ||
(Model >= 0xA0 && Model <= 0xAf)) {
CPU = "znver4";
*Subtype = AMDFAM19H_ZNVER4;
break; // "znver4"
}
break;
default:
break; // Unknown AMD CPU.
}
return CPU;
}
static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf,
unsigned *Features) {
unsigned EAX, EBX;
#define setFeature(F) \
Features[F / 32] |= 1U << (F % 32)
if ((EDX >> 15) & 1)
setFeature(FEATURE_CMOV);
if ((EDX >> 23) & 1)
setFeature(FEATURE_MMX);
if ((EDX >> 25) & 1)
setFeature(FEATURE_SSE);
if ((EDX >> 26) & 1)
setFeature(FEATURE_SSE2);
if ((ECX >> 0) & 1)
setFeature(FEATURE_SSE3);
if ((ECX >> 1) & 1)
setFeature(FEATURE_PCLMUL);
if ((ECX >> 9) & 1)
setFeature(FEATURE_SSSE3);
if ((ECX >> 12) & 1)
setFeature(FEATURE_FMA);
if ((ECX >> 19) & 1)
setFeature(FEATURE_SSE4_1);
if ((ECX >> 20) & 1)
setFeature(FEATURE_SSE4_2);
if ((ECX >> 23) & 1)
setFeature(FEATURE_POPCNT);
if ((ECX >> 25) & 1)
setFeature(FEATURE_AES);
// If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
// indicates that the AVX registers will be saved and restored on context
// switch, then we have full AVX support.
const unsigned AVXBits = (1 << 27) | (1 << 28);
bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
((EAX & 0x6) == 0x6);
#if defined(__APPLE__)
// Darwin lazily saves the AVX512 context on first use: trust that the OS will
// save the AVX512 context if we use AVX512 instructions, even the bit is not
// set right now.
bool HasAVX512Save = true;
#else
// AVX512 requires additional context to be saved by the OS.
bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
#endif
if (HasAVX)
setFeature(FEATURE_AVX);
bool HasLeaf7 =
MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
if (HasLeaf7 && ((EBX >> 3) & 1))
setFeature(FEATURE_BMI);
if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX)
setFeature(FEATURE_AVX2);
if (HasLeaf7 && ((EBX >> 8) & 1))
setFeature(FEATURE_BMI2);
if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512F);
if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512DQ);
if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512IFMA);
if (HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512PF);
if (HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512ER);
if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512CD);
if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512BW);
if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512VL);
if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512VBMI);
if (HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512VBMI2);
if (HasLeaf7 && ((ECX >> 8) & 1))
setFeature(FEATURE_GFNI);
if (HasLeaf7 && ((ECX >> 10) & 1) && HasAVX)
setFeature(FEATURE_VPCLMULQDQ);
if (HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512VNNI);
if (HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512BITALG);
if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512VPOPCNTDQ);
if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX5124VNNIW);
if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX5124FMAPS);
if (HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512VP2INTERSECT);
bool HasLeaf7Subleaf1 =
MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
if (HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save)
setFeature(FEATURE_AVX512BF16);
unsigned MaxExtLevel;
getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
!getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
if (HasExtLeaf1 && ((ECX >> 6) & 1))
setFeature(FEATURE_SSE4_A);
if (HasExtLeaf1 && ((ECX >> 11) & 1))
setFeature(FEATURE_XOP);
if (HasExtLeaf1 && ((ECX >> 16) & 1))
setFeature(FEATURE_FMA4);
#undef setFeature
}
#ifndef _WIN32
__attribute__((visibility("hidden")))
#endif
int __cpu_indicator_init(void) CONSTRUCTOR_ATTRIBUTE;
#ifndef _WIN32
__attribute__((visibility("hidden")))
#endif
struct __processor_model {
unsigned int __cpu_vendor;
unsigned int __cpu_type;
unsigned int __cpu_subtype;
unsigned int __cpu_features[1];
} __cpu_model = {0, 0, 0, {0}};
#ifndef _WIN32
__attribute__((visibility("hidden")))
#endif
unsigned int __cpu_features2 = 0;
// A constructor function that is sets __cpu_model and __cpu_features2 with
// the right values. This needs to run only once. This constructor is
// given the highest priority and it should run before constructors without
// the priority set. However, it still runs after ifunc initializers and
// needs to be called explicitly there.
int CONSTRUCTOR_ATTRIBUTE __cpu_indicator_init(void) {
unsigned EAX, EBX, ECX, EDX;
unsigned MaxLeaf = 5;
unsigned Vendor;
unsigned Model, Family;
unsigned Features[(CPU_FEATURE_MAX + 31) / 32] = {0};
// This function needs to run just once.
if (__cpu_model.__cpu_vendor)
return 0;
if (!isCpuIdSupported() ||
getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX) || MaxLeaf < 1) {
__cpu_model.__cpu_vendor = VENDOR_OTHER;
return -1;
}
getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
detectX86FamilyModel(EAX, &Family, &Model);
// Find available features.
getAvailableFeatures(ECX, EDX, MaxLeaf, &Features[0]);
assert((sizeof(Features)/sizeof(Features[0])) == 2);
__cpu_model.__cpu_features[0] = Features[0];
__cpu_features2 = Features[1];
if (Vendor == SIG_INTEL) {
// Get CPU type.
getIntelProcessorTypeAndSubtype(Family, Model, &Features[0],
&(__cpu_model.__cpu_type),
&(__cpu_model.__cpu_subtype));
__cpu_model.__cpu_vendor = VENDOR_INTEL;
} else if (Vendor == SIG_AMD) {
// Get CPU type.
getAMDProcessorTypeAndSubtype(Family, Model, &Features[0],
&(__cpu_model.__cpu_type),
&(__cpu_model.__cpu_subtype));
__cpu_model.__cpu_vendor = VENDOR_AMD;
} else
__cpu_model.__cpu_vendor = VENDOR_OTHER;
assert(__cpu_model.__cpu_vendor < VENDOR_MAX);
assert(__cpu_model.__cpu_type < CPU_TYPE_MAX);
assert(__cpu_model.__cpu_subtype < CPU_SUBTYPE_MAX);
return 0;
}
#elif defined(__aarch64__)
#ifndef AT_HWCAP
#define AT_HWCAP 16
#endif
#ifndef HWCAP_CPUID
#define HWCAP_CPUID (1 << 11)
#endif
#ifndef HWCAP_FP
#define HWCAP_FP (1 << 0)
#endif
#ifndef HWCAP_ASIMD
#define HWCAP_ASIMD (1 << 1)
#endif
#ifndef HWCAP_AES
#define HWCAP_AES (1 << 3)
#endif
#ifndef HWCAP_PMULL
#define HWCAP_PMULL (1 << 4)
#endif
#ifndef HWCAP_SHA1
#define HWCAP_SHA1 (1 << 5)
#endif
#ifndef HWCAP_SHA2
#define HWCAP_SHA2 (1 << 6)
#endif
#ifndef HWCAP_ATOMICS
#define HWCAP_ATOMICS (1 << 8)
#endif
#ifndef HWCAP_FPHP
#define HWCAP_FPHP (1 << 9)
#endif
#ifndef HWCAP_ASIMDHP
#define HWCAP_ASIMDHP (1 << 10)
#endif
#ifndef HWCAP_ASIMDRDM
#define HWCAP_ASIMDRDM (1 << 12)
#endif
#ifndef HWCAP_JSCVT
#define HWCAP_JSCVT (1 << 13)
#endif
#ifndef HWCAP_FCMA
#define HWCAP_FCMA (1 << 14)
#endif
#ifndef HWCAP_LRCPC
#define HWCAP_LRCPC (1 << 15)
#endif
#ifndef HWCAP_DCPOP
#define HWCAP_DCPOP (1 << 16)
#endif
#ifndef HWCAP_SHA3
#define HWCAP_SHA3 (1 << 17)
#endif
#ifndef HWCAP_SM3
#define HWCAP_SM3 (1 << 18)
#endif
#ifndef HWCAP_SM4
#define HWCAP_SM4 (1 << 19)
#endif
#ifndef HWCAP_ASIMDDP
#define HWCAP_ASIMDDP (1 << 20)
#endif
#ifndef HWCAP_SHA512
#define HWCAP_SHA512 (1 << 21)
#endif
#ifndef HWCAP_SVE
#define HWCAP_SVE (1 << 22)
#endif
#ifndef HWCAP_ASIMDFHM
#define HWCAP_ASIMDFHM (1 << 23)
#endif
#ifndef HWCAP_DIT
#define HWCAP_DIT (1 << 24)
#endif
#ifndef HWCAP_ILRCPC
#define HWCAP_ILRCPC (1 << 26)
#endif
#ifndef HWCAP_FLAGM
#define HWCAP_FLAGM (1 << 27)
#endif
#ifndef HWCAP_SSBS
#define HWCAP_SSBS (1 << 28)
#endif
#ifndef HWCAP_SB
#define HWCAP_SB (1 << 29)
#endif
#ifndef HWCAP2_DCPODP
#define HWCAP2_DCPODP (1 << 0)
#endif
#ifndef HWCAP2_SVE2
#define HWCAP2_SVE2 (1 << 1)
#endif
#ifndef HWCAP2_SVEAES
#define HWCAP2_SVEAES (1 << 2)
#endif
#ifndef HWCAP2_SVEPMULL
#define HWCAP2_SVEPMULL (1 << 3)
#endif
#ifndef HWCAP2_SVEBITPERM
#define HWCAP2_SVEBITPERM (1 << 4)
#endif
#ifndef HWCAP2_SVESHA3
#define HWCAP2_SVESHA3 (1 << 5)
#endif
#ifndef HWCAP2_SVESM4
#define HWCAP2_SVESM4 (1 << 6)
#endif
#ifndef HWCAP2_FLAGM2
#define HWCAP2_FLAGM2 (1 << 7)
#endif
#ifndef HWCAP2_FRINT
#define HWCAP2_FRINT (1 << 8)
#endif
#ifndef HWCAP2_SVEI8MM
#define HWCAP2_SVEI8MM (1 << 9)
#endif
#ifndef HWCAP2_SVEF32MM
#define HWCAP2_SVEF32MM (1 << 10)
#endif
#ifndef HWCAP2_SVEF64MM
#define HWCAP2_SVEF64MM (1 << 11)
#endif
#ifndef HWCAP2_SVEBF16
#define HWCAP2_SVEBF16 (1 << 12)
#endif
#ifndef HWCAP2_I8MM
#define HWCAP2_I8MM (1 << 13)
#endif
#ifndef HWCAP2_BF16
#define HWCAP2_BF16 (1 << 14)
#endif
#ifndef HWCAP2_DGH
#define HWCAP2_DGH (1 << 15)
#endif
#ifndef HWCAP2_RNG
#define HWCAP2_RNG (1 << 16)
#endif
#ifndef HWCAP2_BTI
#define HWCAP2_BTI (1 << 17)
#endif
#ifndef HWCAP2_MTE
#define HWCAP2_MTE (1 << 18)
#endif
#ifndef HWCAP2_RPRES
#define HWCAP2_RPRES (1 << 21)
#endif
#ifndef HWCAP2_MTE3
#define HWCAP2_MTE3 (1 << 22)
#endif
#ifndef HWCAP2_SME
#define HWCAP2_SME (1 << 23)
#endif
#ifndef HWCAP2_SME_I16I64
#define HWCAP2_SME_I16I64 (1 << 24)
#endif
#ifndef HWCAP2_SME_F64F64
#define HWCAP2_SME_F64F64 (1 << 25)
#endif
#ifndef HWCAP2_WFXT
#define HWCAP2_WFXT (1UL << 31)
#endif
#ifndef HWCAP2_EBF16
#define HWCAP2_EBF16 (1UL << 32)
#endif
#ifndef HWCAP2_SVE_EBF16
#define HWCAP2_SVE_EBF16 (1UL << 33)
#endif
// LSE support detection for out-of-line atomics
// using HWCAP and Auxiliary vector
_Bool __aarch64_have_lse_atomics
__attribute__((visibility("hidden"), nocommon));
#if defined(__has_include)
#if __has_include(<sys/auxv.h>)
#include <sys/auxv.h>
#if __has_include(<asm/hwcap.h>)
#include <asm/hwcap.h>
#if defined(__ANDROID__)
#include <string.h>
#include <sys/system_properties.h>
#elif defined(__Fuchsia__)
#include <zircon/features.h>
#include <zircon/syscalls.h>
#endif
// Detect Exynos 9810 CPU
#define IF_EXYNOS9810 \
char arch[PROP_VALUE_MAX]; \
if (__system_property_get("ro.arch", arch) > 0 && \
strncmp(arch, "exynos9810", sizeof("exynos9810") - 1) == 0)
static void CONSTRUCTOR_ATTRIBUTE init_have_lse_atomics(void) {
#if defined(__FreeBSD__)
unsigned long hwcap;
int result = elf_aux_info(AT_HWCAP, &hwcap, sizeof hwcap);
__aarch64_have_lse_atomics = result == 0 && (hwcap & HWCAP_ATOMICS) != 0;
#elif defined(__Fuchsia__)
// This ensures the vDSO is a direct link-time dependency of anything that
// needs this initializer code.
#pragma comment(lib, "zircon")
uint32_t features;
zx_status_t status = _zx_system_get_features(ZX_FEATURE_KIND_CPU, &features);
__aarch64_have_lse_atomics =
status == ZX_OK && (features & ZX_ARM64_FEATURE_ISA_ATOMICS) != 0;
#else
unsigned long hwcap = getauxval(AT_HWCAP);
_Bool result = (hwcap & HWCAP_ATOMICS) != 0;
#if defined(__ANDROID__)
if (result) {
// Some cores in the Exynos 9810 CPU are ARMv8.2 and others are ARMv8.0;
// only the former support LSE atomics. However, the kernel in the
// initial Android 8.0 release of Galaxy S9/S9+ devices incorrectly
// reported the feature as being supported.
//
// The kernel appears to have been corrected to mark it unsupported as of
// the Android 9.0 release on those devices, and this issue has not been
// observed anywhere else. Thus, this workaround may be removed if
// compiler-rt ever drops support for Android 8.0.
IF_EXYNOS9810 result = false;
}
#endif // defined(__ANDROID__)
__aarch64_have_lse_atomics = result;
#endif // defined(__FreeBSD__)
}
#if !defined(DISABLE_AARCH64_FMV)
// CPUFeatures must correspond to the same AArch64 features in
// AArch64TargetParser.h
enum CPUFeatures {
FEAT_RNG,
FEAT_FLAGM,
FEAT_FLAGM2,
FEAT_FP16FML,
FEAT_DOTPROD,
FEAT_SM4,
FEAT_RDM,
FEAT_LSE,
FEAT_FP,
FEAT_SIMD,
FEAT_CRC,
FEAT_SHA1,
FEAT_SHA2,
FEAT_SHA3,
FEAT_AES,
FEAT_PMULL,
FEAT_FP16,
FEAT_DIT,
FEAT_DPB,
FEAT_DPB2,
FEAT_JSCVT,
FEAT_FCMA,
FEAT_RCPC,
FEAT_RCPC2,
FEAT_FRINTTS,
FEAT_DGH,
FEAT_I8MM,
FEAT_BF16,
FEAT_EBF16,
FEAT_RPRES,
FEAT_SVE,
FEAT_SVE_BF16,
FEAT_SVE_EBF16,
FEAT_SVE_I8MM,
FEAT_SVE_F32MM,
FEAT_SVE_F64MM,
FEAT_SVE2,
FEAT_SVE_AES,
FEAT_SVE_PMULL128,
FEAT_SVE_BITPERM,
FEAT_SVE_SHA3,
FEAT_SVE_SM4,
FEAT_SME,
FEAT_MEMTAG,
FEAT_MEMTAG2,
FEAT_MEMTAG3,
FEAT_SB,
FEAT_PREDRES,
FEAT_SSBS,
FEAT_SSBS2,
FEAT_BTI,
FEAT_LS64,
FEAT_LS64_V,
FEAT_LS64_ACCDATA,
FEAT_WFXT,
FEAT_SME_F64,
FEAT_SME_I64,
FEAT_SME2,
FEAT_MAX
};
// Architecture features used
// in Function Multi Versioning
struct {
unsigned long long features;
// As features grows new fields could be added
} __aarch64_cpu_features __attribute__((visibility("hidden"), nocommon));
void init_cpu_features_resolver(unsigned long hwcap, unsigned long hwcap2) {
#define setCPUFeature(F) __aarch64_cpu_features.features |= 1ULL << F
#define getCPUFeature(id, ftr) __asm__("mrs %0, " #id : "=r"(ftr))
#define extractBits(val, start, number) \
(val & ((1ULL << number) - 1ULL) << start) >> start
if (hwcap & HWCAP_CRC32)
setCPUFeature(FEAT_CRC);
if (hwcap & HWCAP_PMULL)
setCPUFeature(FEAT_PMULL);
if (hwcap & HWCAP_FLAGM)
setCPUFeature(FEAT_FLAGM);
if (hwcap2 & HWCAP2_FLAGM2) {
setCPUFeature(FEAT_FLAGM);
setCPUFeature(FEAT_FLAGM2);
}
if (hwcap & HWCAP_SM3 && hwcap & HWCAP_SM4)
setCPUFeature(FEAT_SM4);
if (hwcap & HWCAP_ASIMDDP)
setCPUFeature(FEAT_DOTPROD);
if (hwcap & HWCAP_ASIMDFHM)
setCPUFeature(FEAT_FP16FML);
if (hwcap & HWCAP_FPHP) {
setCPUFeature(FEAT_FP16);
setCPUFeature(FEAT_FP);
}
if (hwcap & HWCAP_DIT)
setCPUFeature(FEAT_DIT);
if (hwcap & HWCAP_ASIMDRDM)
setCPUFeature(FEAT_RDM);
if (hwcap & HWCAP_ILRCPC)
setCPUFeature(FEAT_RCPC2);
if (hwcap & HWCAP_AES)
setCPUFeature(FEAT_AES);
if (hwcap & HWCAP_SHA1)
setCPUFeature(FEAT_SHA1);
if (hwcap & HWCAP_SHA2)
setCPUFeature(FEAT_SHA2);
if (hwcap & HWCAP_JSCVT)
setCPUFeature(FEAT_JSCVT);
if (hwcap & HWCAP_FCMA)
setCPUFeature(FEAT_FCMA);
if (hwcap & HWCAP_SB)
setCPUFeature(FEAT_SB);
if (hwcap & HWCAP_SSBS)
setCPUFeature(FEAT_SSBS2);
if (hwcap2 & HWCAP2_MTE) {
setCPUFeature(FEAT_MEMTAG);
setCPUFeature(FEAT_MEMTAG2);
}
if (hwcap2 & HWCAP2_MTE3) {
setCPUFeature(FEAT_MEMTAG);
setCPUFeature(FEAT_MEMTAG2);
setCPUFeature(FEAT_MEMTAG3);
}
if (hwcap2 & HWCAP2_SVEAES)
setCPUFeature(FEAT_SVE_AES);
if (hwcap2 & HWCAP2_SVEPMULL) {
setCPUFeature(FEAT_SVE_AES);
setCPUFeature(FEAT_SVE_PMULL128);
}
if (hwcap2 & HWCAP2_SVEBITPERM)
setCPUFeature(FEAT_SVE_BITPERM);
if (hwcap2 & HWCAP2_SVESHA3)
setCPUFeature(FEAT_SVE_SHA3);
if (hwcap2 & HWCAP2_SVESM4)
setCPUFeature(FEAT_SVE_SM4);
if (hwcap2 & HWCAP2_DCPODP)
setCPUFeature(FEAT_DPB2);
if (hwcap & HWCAP_ATOMICS)
setCPUFeature(FEAT_LSE);
if (hwcap2 & HWCAP2_RNG)
setCPUFeature(FEAT_RNG);
if (hwcap2 & HWCAP2_I8MM)
setCPUFeature(FEAT_I8MM);
if (hwcap2 & HWCAP2_EBF16)
setCPUFeature(FEAT_EBF16);
if (hwcap2 & HWCAP2_SVE_EBF16)
setCPUFeature(FEAT_SVE_EBF16);
if (hwcap2 & HWCAP2_DGH)
setCPUFeature(FEAT_DGH);
if (hwcap2 & HWCAP2_FRINT)
setCPUFeature(FEAT_FRINTTS);
if (hwcap2 & HWCAP2_SVEI8MM)
setCPUFeature(FEAT_SVE_I8MM);
if (hwcap2 & HWCAP2_SVEF32MM)
setCPUFeature(FEAT_SVE_F32MM);
if (hwcap2 & HWCAP2_SVEF64MM)
setCPUFeature(FEAT_SVE_F64MM);
if (hwcap2 & HWCAP2_BTI)
setCPUFeature(FEAT_BTI);
if (hwcap2 & HWCAP2_RPRES)
setCPUFeature(FEAT_RPRES);
if (hwcap2 & HWCAP2_WFXT)
setCPUFeature(FEAT_WFXT);
if (hwcap2 & HWCAP2_SME)
setCPUFeature(FEAT_SME);
if (hwcap2 & HWCAP2_SME_I16I64)
setCPUFeature(FEAT_SME_I64);
if (hwcap2 & HWCAP2_SME_F64F64)
setCPUFeature(FEAT_SME_F64);
if (hwcap & HWCAP_CPUID) {
unsigned long ftr;
getCPUFeature(ID_AA64PFR1_EL1, ftr);
// ID_AA64PFR1_EL1.MTE >= 0b0001
if (extractBits(ftr, 8, 4) >= 0x1)
setCPUFeature(FEAT_MEMTAG);
// ID_AA64PFR1_EL1.SSBS == 0b0001
if (extractBits(ftr, 4, 4) == 0x1)
setCPUFeature(FEAT_SSBS);
// ID_AA64PFR1_EL1.SME == 0b0010
if (extractBits(ftr, 24, 4) == 0x2)
setCPUFeature(FEAT_SME2);
getCPUFeature(ID_AA64PFR0_EL1, ftr);
// ID_AA64PFR0_EL1.FP != 0b1111
if (extractBits(ftr, 16, 4) != 0xF) {
setCPUFeature(FEAT_FP);
// ID_AA64PFR0_EL1.AdvSIMD has the same value as ID_AA64PFR0_EL1.FP
setCPUFeature(FEAT_SIMD);
}
// ID_AA64PFR0_EL1.SVE != 0b0000
if (extractBits(ftr, 32, 4) != 0x0) {
// get ID_AA64ZFR0_EL1, that name supported
// if sve enabled only
getCPUFeature(S3_0_C0_C4_4, ftr);
// ID_AA64ZFR0_EL1.SVEver == 0b0000
if (extractBits(ftr, 0, 4) == 0x0)
setCPUFeature(FEAT_SVE);
// ID_AA64ZFR0_EL1.SVEver == 0b0001
if (extractBits(ftr, 0, 4) == 0x1)
setCPUFeature(FEAT_SVE2);
// ID_AA64ZFR0_EL1.BF16 != 0b0000
if (extractBits(ftr, 20, 4) != 0x0)
setCPUFeature(FEAT_SVE_BF16);
}
getCPUFeature(ID_AA64ISAR0_EL1, ftr);
// ID_AA64ISAR0_EL1.SHA3 != 0b0000
if (extractBits(ftr, 32, 4) != 0x0)
setCPUFeature(FEAT_SHA3);
getCPUFeature(ID_AA64ISAR1_EL1, ftr);
// ID_AA64ISAR1_EL1.DPB >= 0b0001
if (extractBits(ftr, 0, 4) >= 0x1)
setCPUFeature(FEAT_DPB);
// ID_AA64ISAR1_EL1.LRCPC != 0b0000
if (extractBits(ftr, 20, 4) != 0x0)
setCPUFeature(FEAT_RCPC);
// ID_AA64ISAR1_EL1.SPECRES == 0b0001
if (extractBits(ftr, 40, 4) == 0x2)
setCPUFeature(FEAT_PREDRES);
// ID_AA64ISAR1_EL1.BF16 != 0b0000
if (extractBits(ftr, 44, 4) != 0x0)
setCPUFeature(FEAT_BF16);
// ID_AA64ISAR1_EL1.LS64 >= 0b0001
if (extractBits(ftr, 60, 4) >= 0x1)
setCPUFeature(FEAT_LS64);
// ID_AA64ISAR1_EL1.LS64 >= 0b0010
if (extractBits(ftr, 60, 4) >= 0x2)
setCPUFeature(FEAT_LS64_V);
// ID_AA64ISAR1_EL1.LS64 >= 0b0011
if (extractBits(ftr, 60, 4) >= 0x3)
setCPUFeature(FEAT_LS64_ACCDATA);
} else {
// Set some features in case of no CPUID support
if (hwcap & (HWCAP_FP | HWCAP_FPHP)) {
setCPUFeature(FEAT_FP);
// FP and AdvSIMD fields have the same value
setCPUFeature(FEAT_SIMD);
}
if (hwcap & HWCAP_DCPOP || hwcap2 & HWCAP2_DCPODP)
setCPUFeature(FEAT_DPB);
if (hwcap & HWCAP_LRCPC || hwcap & HWCAP_ILRCPC)
setCPUFeature(FEAT_RCPC);
if (hwcap2 & HWCAP2_BF16 || hwcap2 & HWCAP2_EBF16)
setCPUFeature(FEAT_BF16);
if (hwcap2 & HWCAP2_SVEBF16)
setCPUFeature(FEAT_SVE_BF16);
if (hwcap2 & HWCAP2_SVE2 && hwcap & HWCAP_SVE)
setCPUFeature(FEAT_SVE2);
if (hwcap & HWCAP_SHA3)
setCPUFeature(FEAT_SHA3);
}
}
void CONSTRUCTOR_ATTRIBUTE init_cpu_features(void) {
unsigned long hwcap;
unsigned long hwcap2;
// CPU features already initialized.
if (__aarch64_cpu_features.features)
return;
setCPUFeature(FEAT_MAX);
#if defined(__FreeBSD__)
int res = 0;
res = elf_aux_info(AT_HWCAP, &hwcap, sizeof hwcap);
res |= elf_aux_info(AT_HWCAP2, &hwcap2, sizeof hwcap2);
if (res)
return;
#else
#if defined(__ANDROID__)
// Don't set any CPU features,
// detection could be wrong on Exynos 9810.
IF_EXYNOS9810 return;
#endif // defined(__ANDROID__)
hwcap = getauxval(AT_HWCAP);
hwcap2 = getauxval(AT_HWCAP2);
#endif // defined(__FreeBSD__)
init_cpu_features_resolver(hwcap, hwcap2);
#undef extractBits
#undef getCPUFeature
#undef setCPUFeature
#undef IF_EXYNOS9810
}
#endif // !defined(DISABLE_AARCH64_FMV)
#endif // defined(__has_include)
#endif // __has_include(<sys/auxv.h>)
#endif // __has_include(<asm/hwcap.h>)
#endif // defined(__aarch64__)