Files
clang-p2996/flang/runtime/internal-unit.cpp
Peter Klausler bad5205595 [flang][runtime] Support internal I/O to CHARACTER(KIND/=1)
Allow internal I/O to support non-default kinds of CHARACTER.

The I/O runtime design anticipated this standard feature, but
this patch is somewhat larger than I thought it would be because
many code sites had to have assumptions about units (characters
vs. bytes) brought into harmony, and some encoding utilities
had to be pulled out of IoStatementState and templatized into
their own new header file so that they are available to formatted
output code without having to "thread" an IoStatementState reference
through many call chains.

Differential Revision: https://reviews.llvm.org/D131107
2022-08-09 08:46:21 -07:00

163 lines
5.2 KiB
C++

//===-- runtime/internal-unit.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "internal-unit.h"
#include "io-error.h"
#include "flang/Runtime/descriptor.h"
#include <algorithm>
#include <type_traits>
namespace Fortran::runtime::io {
template <Direction DIR>
InternalDescriptorUnit<DIR>::InternalDescriptorUnit(
Scalar scalar, std::size_t length, int kind) {
internalIoCharKind = kind;
recordLength = length;
endfileRecordNumber = 2;
void *pointer{reinterpret_cast<void *>(const_cast<char *>(scalar))};
descriptor().Establish(TypeCode{TypeCategory::Character, kind}, length * kind,
pointer, 0, nullptr, CFI_attribute_pointer);
}
template <Direction DIR>
InternalDescriptorUnit<DIR>::InternalDescriptorUnit(
const Descriptor &that, const Terminator &terminator) {
auto thatType{that.type().GetCategoryAndKind()};
RUNTIME_CHECK(terminator, thatType.has_value());
RUNTIME_CHECK(terminator, thatType->first == TypeCategory::Character);
Descriptor &d{descriptor()};
RUNTIME_CHECK(
terminator, that.SizeInBytes() <= d.SizeInBytes(maxRank, true, 0));
new (&d) Descriptor{that};
d.Check();
internalIoCharKind = thatType->second;
recordLength = d.ElementBytes();
endfileRecordNumber = d.Elements() + 1;
}
template <Direction DIR> void InternalDescriptorUnit<DIR>::EndIoStatement() {
if constexpr (DIR == Direction::Output) {
// Clear the remainder of the current record if anything was written
// to it, or if it is the only record.
auto end{endfileRecordNumber.value_or(0)};
if (currentRecordNumber < end &&
(end == 2 || furthestPositionInRecord > 0)) {
BlankFillOutputRecord();
}
}
}
template <Direction DIR>
bool InternalDescriptorUnit<DIR>::Emit(
const char *data, std::size_t bytes, IoErrorHandler &handler) {
if constexpr (DIR == Direction::Input) {
handler.Crash("InternalDescriptorUnit<Direction::Input>::Emit() called");
return false && data[bytes] != 0; // bogus compare silences GCC warning
} else {
if (bytes <= 0) {
return true;
}
char *record{CurrentRecord()};
if (!record) {
handler.SignalError(IostatInternalWriteOverrun);
return false;
}
auto furthestAfter{std::max(furthestPositionInRecord,
positionInRecord + static_cast<std::int64_t>(bytes))};
bool ok{true};
if (furthestAfter > static_cast<std::int64_t>(recordLength.value_or(0))) {
handler.SignalError(IostatRecordWriteOverrun);
furthestAfter = recordLength.value_or(0);
bytes = std::max(std::int64_t{0}, furthestAfter - positionInRecord);
ok = false;
} else if (positionInRecord > furthestPositionInRecord) {
BlankFill(record + furthestPositionInRecord,
positionInRecord - furthestPositionInRecord);
}
std::memcpy(record + positionInRecord, data, bytes);
positionInRecord += bytes;
furthestPositionInRecord = furthestAfter;
return ok;
}
}
template <Direction DIR>
std::size_t InternalDescriptorUnit<DIR>::GetNextInputBytes(
const char *&p, IoErrorHandler &handler) {
if constexpr (DIR == Direction::Output) {
handler.Crash("InternalDescriptorUnit<Direction::Output>::"
"GetNextInputBytes() called");
return 0;
} else {
const char *record{CurrentRecord()};
if (!record) {
handler.SignalEnd();
return 0;
} else if (positionInRecord >= recordLength.value_or(positionInRecord)) {
return 0;
} else {
p = &record[positionInRecord];
return *recordLength - positionInRecord;
}
}
}
template <Direction DIR>
bool InternalDescriptorUnit<DIR>::AdvanceRecord(IoErrorHandler &handler) {
if (currentRecordNumber >= endfileRecordNumber.value_or(0)) {
handler.SignalEnd();
return false;
}
if constexpr (DIR == Direction::Output) {
BlankFillOutputRecord();
}
++currentRecordNumber;
BeginRecord();
return true;
}
template <Direction DIR>
void InternalDescriptorUnit<DIR>::BlankFill(char *at, std::size_t bytes) {
switch (internalIoCharKind) {
case 2:
std::fill_n(reinterpret_cast<char16_t *>(at), bytes / 2,
static_cast<char16_t>(' '));
break;
case 4:
std::fill_n(reinterpret_cast<char32_t *>(at), bytes / 4,
static_cast<char32_t>(' '));
break;
default:
std::fill_n(at, bytes, ' ');
break;
}
}
template <Direction DIR>
void InternalDescriptorUnit<DIR>::BlankFillOutputRecord() {
if constexpr (DIR == Direction::Output) {
if (furthestPositionInRecord <
recordLength.value_or(furthestPositionInRecord)) {
BlankFill(CurrentRecord() + furthestPositionInRecord,
*recordLength - furthestPositionInRecord);
}
}
}
template <Direction DIR>
void InternalDescriptorUnit<DIR>::BackspaceRecord(IoErrorHandler &handler) {
RUNTIME_CHECK(handler, currentRecordNumber > 1);
--currentRecordNumber;
BeginRecord();
}
template class InternalDescriptorUnit<Direction::Output>;
template class InternalDescriptorUnit<Direction::Input>;
} // namespace Fortran::runtime::io