Files
clang-p2996/lldb/source/Host/posix/MainLoopPosix.cpp
Michał Górny e8ee0f121d [lldb] [MainLoopPosix] Fix crash upon adding lots of pending callbacks
If lots of pending callbacks are added while the main loop has exited
already, the trigger pipe buffer fills in, causing the write to fail
and the related assertion to fail.  To avoid this, add a boolean member
indicating whether the callbacks have been triggered already.
If the trigger was done, avoid writing to the pipe until loops proceeds
to run them and resets the variable.

Besides fixing the issue, this also avoids writing to the pipe multiple
times if callbacks are added faster than the loop is able to process
them.  Previously, this would lead to the loop performing multiple read
iterations from pipe unnecessarily.

Sponsored by: The FreeBSD Foundation

Differential Revision: https://reviews.llvm.org/D135516
2022-10-17 17:48:44 +02:00

409 lines
12 KiB
C++

//===-- MainLoopPosix.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Host/posix/MainLoopPosix.h"
#include "lldb/Host/Config.h"
#include "lldb/Host/PosixApi.h"
#include "lldb/Utility/Status.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/Errno.h"
#include <algorithm>
#include <cassert>
#include <cerrno>
#include <csignal>
#include <ctime>
#include <vector>
// Multiplexing is implemented using kqueue on systems that support it (BSD
// variants including OSX). On linux we use ppoll, while android uses pselect
// (ppoll is present but not implemented properly). On windows we use WSApoll
// (which does not support signals).
#if HAVE_SYS_EVENT_H
#include <sys/event.h>
#elif defined(__ANDROID__)
#include <sys/syscall.h>
#else
#include <poll.h>
#endif
using namespace lldb;
using namespace lldb_private;
static sig_atomic_t g_signal_flags[NSIG];
static void SignalHandler(int signo, siginfo_t *info, void *) {
assert(signo < NSIG);
g_signal_flags[signo] = 1;
}
class MainLoopPosix::RunImpl {
public:
RunImpl(MainLoopPosix &loop);
~RunImpl() = default;
Status Poll();
void ProcessEvents();
private:
MainLoopPosix &loop;
#if HAVE_SYS_EVENT_H
std::vector<struct kevent> in_events;
struct kevent out_events[4];
int num_events = -1;
#else
#ifdef __ANDROID__
fd_set read_fd_set;
#else
std::vector<struct pollfd> read_fds;
#endif
sigset_t get_sigmask();
#endif
};
#if HAVE_SYS_EVENT_H
MainLoopPosix::RunImpl::RunImpl(MainLoopPosix &loop) : loop(loop) {
in_events.reserve(loop.m_read_fds.size());
}
Status MainLoopPosix::RunImpl::Poll() {
in_events.resize(loop.m_read_fds.size());
unsigned i = 0;
for (auto &fd : loop.m_read_fds)
EV_SET(&in_events[i++], fd.first, EVFILT_READ, EV_ADD, 0, 0, 0);
num_events = kevent(loop.m_kqueue, in_events.data(), in_events.size(),
out_events, std::size(out_events), nullptr);
if (num_events < 0) {
if (errno == EINTR) {
// in case of EINTR, let the main loop run one iteration
// we need to zero num_events to avoid assertions failing
num_events = 0;
} else
return Status(errno, eErrorTypePOSIX);
}
return Status();
}
void MainLoopPosix::RunImpl::ProcessEvents() {
assert(num_events >= 0);
for (int i = 0; i < num_events; ++i) {
if (loop.m_terminate_request)
return;
switch (out_events[i].filter) {
case EVFILT_READ:
loop.ProcessReadObject(out_events[i].ident);
break;
case EVFILT_SIGNAL:
loop.ProcessSignal(out_events[i].ident);
break;
default:
llvm_unreachable("Unknown event");
}
}
}
#else
MainLoopPosix::RunImpl::RunImpl(MainLoopPosix &loop) : loop(loop) {
#ifndef __ANDROID__
read_fds.reserve(loop.m_read_fds.size());
#endif
}
sigset_t MainLoopPosix::RunImpl::get_sigmask() {
sigset_t sigmask;
int ret = pthread_sigmask(SIG_SETMASK, nullptr, &sigmask);
assert(ret == 0);
(void)ret;
for (const auto &sig : loop.m_signals)
sigdelset(&sigmask, sig.first);
return sigmask;
}
#ifdef __ANDROID__
Status MainLoopPosix::RunImpl::Poll() {
// ppoll(2) is not supported on older all android versions. Also, older
// versions android (API <= 19) implemented pselect in a non-atomic way, as a
// combination of pthread_sigmask and select. This is not sufficient for us,
// as we rely on the atomicity to correctly implement signal polling, so we
// call the underlying syscall ourselves.
FD_ZERO(&read_fd_set);
int nfds = 0;
for (const auto &fd : loop.m_read_fds) {
FD_SET(fd.first, &read_fd_set);
nfds = std::max(nfds, fd.first + 1);
}
union {
sigset_t set;
uint64_t pad;
} kernel_sigset;
memset(&kernel_sigset, 0, sizeof(kernel_sigset));
kernel_sigset.set = get_sigmask();
struct {
void *sigset_ptr;
size_t sigset_len;
} extra_data = {&kernel_sigset, sizeof(kernel_sigset)};
if (syscall(__NR_pselect6, nfds, &read_fd_set, nullptr, nullptr, nullptr,
&extra_data) == -1 &&
errno != EINTR)
return Status(errno, eErrorTypePOSIX);
return Status();
}
#else
Status MainLoopPosix::RunImpl::Poll() {
read_fds.clear();
sigset_t sigmask = get_sigmask();
for (const auto &fd : loop.m_read_fds) {
struct pollfd pfd;
pfd.fd = fd.first;
pfd.events = POLLIN;
pfd.revents = 0;
read_fds.push_back(pfd);
}
if (ppoll(read_fds.data(), read_fds.size(), nullptr, &sigmask) == -1 &&
errno != EINTR)
return Status(errno, eErrorTypePOSIX);
return Status();
}
#endif
void MainLoopPosix::RunImpl::ProcessEvents() {
#ifdef __ANDROID__
// Collect first all readable file descriptors into a separate vector and
// then iterate over it to invoke callbacks. Iterating directly over
// loop.m_read_fds is not possible because the callbacks can modify the
// container which could invalidate the iterator.
std::vector<IOObject::WaitableHandle> fds;
for (const auto &fd : loop.m_read_fds)
if (FD_ISSET(fd.first, &read_fd_set))
fds.push_back(fd.first);
for (const auto &handle : fds) {
#else
for (const auto &fd : read_fds) {
if ((fd.revents & (POLLIN | POLLHUP)) == 0)
continue;
IOObject::WaitableHandle handle = fd.fd;
#endif
if (loop.m_terminate_request)
return;
loop.ProcessReadObject(handle);
}
std::vector<int> signals;
for (const auto &entry : loop.m_signals)
if (g_signal_flags[entry.first] != 0)
signals.push_back(entry.first);
for (const auto &signal : signals) {
if (loop.m_terminate_request)
return;
g_signal_flags[signal] = 0;
loop.ProcessSignal(signal);
}
}
#endif
MainLoopPosix::MainLoopPosix() : m_triggering(false) {
Status error = m_trigger_pipe.CreateNew(/*child_process_inherit=*/false);
assert(error.Success());
const int trigger_pipe_fd = m_trigger_pipe.GetReadFileDescriptor();
m_read_fds.insert({trigger_pipe_fd, [trigger_pipe_fd](MainLoopBase &loop) {
char c;
ssize_t bytes_read = llvm::sys::RetryAfterSignal(
-1, ::read, trigger_pipe_fd, &c, 1);
assert(bytes_read == 1);
UNUSED_IF_ASSERT_DISABLED(bytes_read);
// NB: This implicitly causes another loop iteration
// and therefore the execution of pending callbacks.
}});
#if HAVE_SYS_EVENT_H
m_kqueue = kqueue();
assert(m_kqueue >= 0);
#endif
}
MainLoopPosix::~MainLoopPosix() {
#if HAVE_SYS_EVENT_H
close(m_kqueue);
#endif
m_read_fds.erase(m_trigger_pipe.GetReadFileDescriptor());
m_trigger_pipe.Close();
assert(m_read_fds.size() == 0);
assert(m_signals.size() == 0);
}
MainLoopPosix::ReadHandleUP
MainLoopPosix::RegisterReadObject(const IOObjectSP &object_sp,
const Callback &callback, Status &error) {
if (!object_sp || !object_sp->IsValid()) {
error.SetErrorString("IO object is not valid.");
return nullptr;
}
const bool inserted =
m_read_fds.insert({object_sp->GetWaitableHandle(), callback}).second;
if (!inserted) {
error.SetErrorStringWithFormat("File descriptor %d already monitored.",
object_sp->GetWaitableHandle());
return nullptr;
}
return CreateReadHandle(object_sp);
}
// We shall block the signal, then install the signal handler. The signal will
// be unblocked in the Run() function to check for signal delivery.
MainLoopPosix::SignalHandleUP
MainLoopPosix::RegisterSignal(int signo, const Callback &callback,
Status &error) {
auto signal_it = m_signals.find(signo);
if (signal_it != m_signals.end()) {
auto callback_it = signal_it->second.callbacks.insert(
signal_it->second.callbacks.end(), callback);
return SignalHandleUP(new SignalHandle(*this, signo, callback_it));
}
SignalInfo info;
info.callbacks.push_back(callback);
struct sigaction new_action;
new_action.sa_sigaction = &SignalHandler;
new_action.sa_flags = SA_SIGINFO;
sigemptyset(&new_action.sa_mask);
sigaddset(&new_action.sa_mask, signo);
sigset_t old_set;
g_signal_flags[signo] = 0;
// Even if using kqueue, the signal handler will still be invoked, so it's
// important to replace it with our "benign" handler.
int ret = sigaction(signo, &new_action, &info.old_action);
(void)ret;
assert(ret == 0 && "sigaction failed");
#if HAVE_SYS_EVENT_H
struct kevent ev;
EV_SET(&ev, signo, EVFILT_SIGNAL, EV_ADD, 0, 0, 0);
ret = kevent(m_kqueue, &ev, 1, nullptr, 0, nullptr);
assert(ret == 0);
#endif
// If we're using kqueue, the signal needs to be unblocked in order to
// receive it. If using pselect/ppoll, we need to block it, and later unblock
// it as a part of the system call.
ret = pthread_sigmask(HAVE_SYS_EVENT_H ? SIG_UNBLOCK : SIG_BLOCK,
&new_action.sa_mask, &old_set);
assert(ret == 0 && "pthread_sigmask failed");
info.was_blocked = sigismember(&old_set, signo);
auto insert_ret = m_signals.insert({signo, info});
return SignalHandleUP(new SignalHandle(
*this, signo, insert_ret.first->second.callbacks.begin()));
}
void MainLoopPosix::UnregisterReadObject(IOObject::WaitableHandle handle) {
bool erased = m_read_fds.erase(handle);
UNUSED_IF_ASSERT_DISABLED(erased);
assert(erased);
}
void MainLoopPosix::UnregisterSignal(
int signo, std::list<Callback>::iterator callback_it) {
auto it = m_signals.find(signo);
assert(it != m_signals.end());
it->second.callbacks.erase(callback_it);
// Do not remove the signal handler unless all callbacks have been erased.
if (!it->second.callbacks.empty())
return;
sigaction(signo, &it->second.old_action, nullptr);
sigset_t set;
sigemptyset(&set);
sigaddset(&set, signo);
int ret = pthread_sigmask(it->second.was_blocked ? SIG_BLOCK : SIG_UNBLOCK,
&set, nullptr);
assert(ret == 0);
(void)ret;
#if HAVE_SYS_EVENT_H
struct kevent ev;
EV_SET(&ev, signo, EVFILT_SIGNAL, EV_DELETE, 0, 0, 0);
ret = kevent(m_kqueue, &ev, 1, nullptr, 0, nullptr);
assert(ret == 0);
#endif
m_signals.erase(it);
}
Status MainLoopPosix::Run() {
m_terminate_request = false;
Status error;
RunImpl impl(*this);
// run until termination or until we run out of things to listen to
// (m_read_fds will always contain m_trigger_pipe fd, so check for > 1)
while (!m_terminate_request &&
(m_read_fds.size() > 1 || !m_signals.empty())) {
error = impl.Poll();
if (error.Fail())
return error;
impl.ProcessEvents();
m_triggering = false;
ProcessPendingCallbacks();
}
return Status();
}
void MainLoopPosix::ProcessReadObject(IOObject::WaitableHandle handle) {
auto it = m_read_fds.find(handle);
if (it != m_read_fds.end())
it->second(*this); // Do the work
}
void MainLoopPosix::ProcessSignal(int signo) {
auto it = m_signals.find(signo);
if (it != m_signals.end()) {
// The callback may actually register/unregister signal handlers,
// so we need to create a copy first.
llvm::SmallVector<Callback, 4> callbacks_to_run{
it->second.callbacks.begin(), it->second.callbacks.end()};
for (auto &x : callbacks_to_run)
x(*this); // Do the work
}
}
void MainLoopPosix::TriggerPendingCallbacks() {
if (m_triggering.exchange(true))
return;
char c = '.';
size_t bytes_written;
Status error = m_trigger_pipe.Write(&c, 1, bytes_written);
assert(error.Success());
UNUSED_IF_ASSERT_DISABLED(error);
assert(bytes_written == 1);
}