Before Windows 11 and Windows Server 2022, only one 'processor group' is assigned by default to a starting process, then the program is responsible for dispatching its own threads on more 'processor groups'. That is what 8404aeb56a was doing, allowing LLVM tools to automatically use all hardware threads in the machine.
After Windows 11 and Windows Server 2022, the OS takes care of that. This has an adverse effect reported in #56618 which is that using `GetProcessAffinityMask()` API in some edge cases seems buggy now. That API is used to detect if an affinity mask was set, and adjust accordingly the available threads for a ThreadPool.
With this patch, on one hand, we let the OS dispatch threads on all 'processor groups', but only for Windows 11 & Windows Server 2022 and after. We retain the old behavior for older OS versions. On the other hand, a workaround was added to mitigate the `GetProcessAffinityMask()` issue described above (see Threading.inc, L226).
Differential Revision: https://reviews.llvm.org/D138747
336 lines
11 KiB
C++
336 lines
11 KiB
C++
//===- Windows/Threading.inc - Win32 Threading Implementation - -*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file provides the Win32 specific implementation of Threading functions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
|
|
#include "llvm/Support/Windows/WindowsSupport.h"
|
|
#include <process.h>
|
|
|
|
#include <bitset>
|
|
|
|
// Windows will at times define MemoryFence.
|
|
#ifdef MemoryFence
|
|
#undef MemoryFence
|
|
#endif
|
|
|
|
namespace llvm {
|
|
HANDLE
|
|
llvm_execute_on_thread_impl(unsigned(__stdcall *ThreadFunc)(void *), void *Arg,
|
|
std::optional<unsigned> StackSizeInBytes) {
|
|
HANDLE hThread = (HANDLE)::_beginthreadex(NULL, StackSizeInBytes.value_or(0),
|
|
ThreadFunc, Arg, 0, NULL);
|
|
|
|
if (!hThread) {
|
|
ReportLastErrorFatal("_beginthreadex failed");
|
|
}
|
|
|
|
return hThread;
|
|
}
|
|
|
|
void llvm_thread_join_impl(HANDLE hThread) {
|
|
if (::WaitForSingleObject(hThread, INFINITE) == WAIT_FAILED) {
|
|
ReportLastErrorFatal("WaitForSingleObject failed");
|
|
}
|
|
}
|
|
|
|
void llvm_thread_detach_impl(HANDLE hThread) {
|
|
if (::CloseHandle(hThread) == FALSE) {
|
|
ReportLastErrorFatal("CloseHandle failed");
|
|
}
|
|
}
|
|
|
|
DWORD llvm_thread_get_id_impl(HANDLE hThread) { return ::GetThreadId(hThread); }
|
|
|
|
DWORD llvm_thread_get_current_id_impl() { return ::GetCurrentThreadId(); }
|
|
|
|
} // namespace llvm
|
|
|
|
uint64_t llvm::get_threadid() { return uint64_t(::GetCurrentThreadId()); }
|
|
|
|
uint32_t llvm::get_max_thread_name_length() { return 0; }
|
|
|
|
#if defined(_MSC_VER)
|
|
static void SetThreadName(DWORD Id, LPCSTR Name) {
|
|
constexpr DWORD MS_VC_EXCEPTION = 0x406D1388;
|
|
|
|
#pragma pack(push, 8)
|
|
struct THREADNAME_INFO {
|
|
DWORD dwType; // Must be 0x1000.
|
|
LPCSTR szName; // Pointer to thread name
|
|
DWORD dwThreadId; // Thread ID (-1 == current thread)
|
|
DWORD dwFlags; // Reserved. Do not use.
|
|
};
|
|
#pragma pack(pop)
|
|
|
|
THREADNAME_INFO info;
|
|
info.dwType = 0x1000;
|
|
info.szName = Name;
|
|
info.dwThreadId = Id;
|
|
info.dwFlags = 0;
|
|
|
|
__try {
|
|
::RaiseException(MS_VC_EXCEPTION, 0, sizeof(info) / sizeof(ULONG_PTR),
|
|
(ULONG_PTR *)&info);
|
|
} __except (EXCEPTION_EXECUTE_HANDLER) {
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void llvm::set_thread_name(const Twine &Name) {
|
|
#if defined(_MSC_VER)
|
|
// Make sure the input is null terminated.
|
|
SmallString<64> Storage;
|
|
StringRef NameStr = Name.toNullTerminatedStringRef(Storage);
|
|
SetThreadName(::GetCurrentThreadId(), NameStr.data());
|
|
#endif
|
|
}
|
|
|
|
void llvm::get_thread_name(SmallVectorImpl<char> &Name) {
|
|
// "Name" is not an inherent property of a thread on Windows. In fact, when
|
|
// you "set" the name, you are only firing a one-time message to a debugger
|
|
// which it interprets as a program setting its threads' name. We may be
|
|
// able to get fancy by creating a TLS entry when someone calls
|
|
// set_thread_name so that subsequent calls to get_thread_name return this
|
|
// value.
|
|
Name.clear();
|
|
}
|
|
|
|
SetThreadPriorityResult llvm::set_thread_priority(ThreadPriority Priority) {
|
|
// https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-setthreadpriority
|
|
// Begin background processing mode. The system lowers the resource scheduling
|
|
// priorities of the thread so that it can perform background work without
|
|
// significantly affecting activity in the foreground.
|
|
// End background processing mode. The system restores the resource scheduling
|
|
// priorities of the thread as they were before the thread entered background
|
|
// processing mode.
|
|
//
|
|
// FIXME: consider THREAD_PRIORITY_BELOW_NORMAL for Low
|
|
return SetThreadPriority(GetCurrentThread(),
|
|
Priority != ThreadPriority::Default
|
|
? THREAD_MODE_BACKGROUND_BEGIN
|
|
: THREAD_MODE_BACKGROUND_END)
|
|
? SetThreadPriorityResult::SUCCESS
|
|
: SetThreadPriorityResult::FAILURE;
|
|
}
|
|
|
|
struct ProcessorGroup {
|
|
unsigned ID;
|
|
unsigned AllThreads;
|
|
unsigned UsableThreads;
|
|
unsigned ThreadsPerCore;
|
|
uint64_t Affinity;
|
|
|
|
unsigned useableCores() const {
|
|
return std::max(1U, UsableThreads / ThreadsPerCore);
|
|
}
|
|
};
|
|
|
|
template <typename F>
|
|
static bool IterateProcInfo(LOGICAL_PROCESSOR_RELATIONSHIP Relationship, F Fn) {
|
|
DWORD Len = 0;
|
|
BOOL R = ::GetLogicalProcessorInformationEx(Relationship, NULL, &Len);
|
|
if (R || GetLastError() != ERROR_INSUFFICIENT_BUFFER) {
|
|
return false;
|
|
}
|
|
auto *Info = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)calloc(1, Len);
|
|
R = ::GetLogicalProcessorInformationEx(Relationship, Info, &Len);
|
|
if (R) {
|
|
auto *End =
|
|
(SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)((uint8_t *)Info + Len);
|
|
for (auto *Curr = Info; Curr < End;
|
|
Curr = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)((uint8_t *)Curr +
|
|
Curr->Size)) {
|
|
if (Curr->Relationship != Relationship)
|
|
continue;
|
|
Fn(Curr);
|
|
}
|
|
}
|
|
free(Info);
|
|
return true;
|
|
}
|
|
|
|
static std::optional<std::vector<USHORT>> getActiveGroups() {
|
|
USHORT Count = 0;
|
|
if (::GetProcessGroupAffinity(GetCurrentProcess(), &Count, nullptr))
|
|
return std::nullopt;
|
|
|
|
if (GetLastError() != ERROR_INSUFFICIENT_BUFFER)
|
|
return std::nullopt;
|
|
|
|
std::vector<USHORT> Groups;
|
|
Groups.resize(Count);
|
|
if (!::GetProcessGroupAffinity(GetCurrentProcess(), &Count, Groups.data()))
|
|
return std::nullopt;
|
|
|
|
return Groups;
|
|
}
|
|
|
|
static ArrayRef<ProcessorGroup> getProcessorGroups() {
|
|
auto computeGroups = []() {
|
|
SmallVector<ProcessorGroup, 4> Groups;
|
|
|
|
auto HandleGroup = [&](SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *ProcInfo) {
|
|
GROUP_RELATIONSHIP &El = ProcInfo->Group;
|
|
for (unsigned J = 0; J < El.ActiveGroupCount; ++J) {
|
|
ProcessorGroup G;
|
|
G.ID = Groups.size();
|
|
G.AllThreads = El.GroupInfo[J].MaximumProcessorCount;
|
|
G.UsableThreads = El.GroupInfo[J].ActiveProcessorCount;
|
|
assert(G.UsableThreads <= 64);
|
|
G.Affinity = El.GroupInfo[J].ActiveProcessorMask;
|
|
Groups.push_back(G);
|
|
}
|
|
};
|
|
|
|
if (!IterateProcInfo(RelationGroup, HandleGroup))
|
|
return std::vector<ProcessorGroup>();
|
|
|
|
auto HandleProc = [&](SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *ProcInfo) {
|
|
PROCESSOR_RELATIONSHIP &El = ProcInfo->Processor;
|
|
assert(El.GroupCount == 1);
|
|
unsigned NumHyperThreads = 1;
|
|
// If the flag is set, each core supports more than one hyper-thread.
|
|
if (El.Flags & LTP_PC_SMT)
|
|
NumHyperThreads = std::bitset<64>(El.GroupMask[0].Mask).count();
|
|
unsigned I = El.GroupMask[0].Group;
|
|
Groups[I].ThreadsPerCore = NumHyperThreads;
|
|
};
|
|
|
|
if (!IterateProcInfo(RelationProcessorCore, HandleProc))
|
|
return std::vector<ProcessorGroup>();
|
|
|
|
auto ActiveGroups = getActiveGroups();
|
|
if (!ActiveGroups)
|
|
return std::vector<ProcessorGroup>();
|
|
|
|
// If there's an affinity mask set, assume the user wants to constrain the
|
|
// current process to only a single CPU group. On Windows, it is not
|
|
// possible for affinity masks to cross CPU group boundaries.
|
|
DWORD_PTR ProcessAffinityMask = 0, SystemAffinityMask = 0;
|
|
if (::GetProcessAffinityMask(GetCurrentProcess(), &ProcessAffinityMask,
|
|
&SystemAffinityMask)) {
|
|
|
|
if (ProcessAffinityMask != SystemAffinityMask) {
|
|
if (llvm::RunningWindows11OrGreater() && ActiveGroups->size() > 1) {
|
|
// The process affinity mask is spurious, due to an OS bug, ignore it.
|
|
return std::vector<ProcessorGroup>(Groups.begin(), Groups.end());
|
|
}
|
|
|
|
assert(ActiveGroups->size() == 1 &&
|
|
"When an affinity mask is set, the process is expected to be "
|
|
"assigned to a single processor group!");
|
|
|
|
unsigned CurrentGroupID = (*ActiveGroups)[0];
|
|
ProcessorGroup NewG{Groups[CurrentGroupID]};
|
|
NewG.Affinity = ProcessAffinityMask;
|
|
NewG.UsableThreads = countPopulation(ProcessAffinityMask);
|
|
Groups.clear();
|
|
Groups.push_back(NewG);
|
|
}
|
|
}
|
|
return std::vector<ProcessorGroup>(Groups.begin(), Groups.end());
|
|
};
|
|
static auto Groups = computeGroups();
|
|
return ArrayRef<ProcessorGroup>(Groups);
|
|
}
|
|
|
|
template <typename R, typename UnaryPredicate>
|
|
static unsigned aggregate(R &&Range, UnaryPredicate P) {
|
|
unsigned I{};
|
|
for (const auto &It : Range)
|
|
I += P(It);
|
|
return I;
|
|
}
|
|
|
|
int llvm::get_physical_cores() {
|
|
static unsigned Cores =
|
|
aggregate(getProcessorGroups(), [](const ProcessorGroup &G) {
|
|
return G.UsableThreads / G.ThreadsPerCore;
|
|
});
|
|
return Cores;
|
|
}
|
|
|
|
static int computeHostNumHardwareThreads() {
|
|
static unsigned Threads =
|
|
aggregate(getProcessorGroups(),
|
|
[](const ProcessorGroup &G) { return G.UsableThreads; });
|
|
return Threads;
|
|
}
|
|
|
|
// Finds the proper CPU socket where a thread number should go. Returns
|
|
// 'std::nullopt' if the thread shall remain on the actual CPU socket.
|
|
std::optional<unsigned>
|
|
llvm::ThreadPoolStrategy::compute_cpu_socket(unsigned ThreadPoolNum) const {
|
|
ArrayRef<ProcessorGroup> Groups = getProcessorGroups();
|
|
// Only one CPU socket in the system or process affinity was set, no need to
|
|
// move the thread(s) to another CPU socket.
|
|
if (Groups.size() <= 1)
|
|
return std::nullopt;
|
|
|
|
// We ask for less threads than there are hardware threads per CPU socket, no
|
|
// need to dispatch threads to other CPU sockets.
|
|
unsigned MaxThreadsPerSocket =
|
|
UseHyperThreads ? Groups[0].UsableThreads : Groups[0].useableCores();
|
|
if (compute_thread_count() <= MaxThreadsPerSocket)
|
|
return std::nullopt;
|
|
|
|
assert(ThreadPoolNum < compute_thread_count() &&
|
|
"The thread index is not within thread strategy's range!");
|
|
|
|
// Assumes the same number of hardware threads per CPU socket.
|
|
return (ThreadPoolNum * Groups.size()) / compute_thread_count();
|
|
}
|
|
|
|
// Assign the current thread to a more appropriate CPU socket or CPU group
|
|
void llvm::ThreadPoolStrategy::apply_thread_strategy(
|
|
unsigned ThreadPoolNum) const {
|
|
|
|
// After Windows 11 and Windows Server 2022, let the OS do the scheduling,
|
|
// since a process automatically gains access to all processor groups.
|
|
if (llvm::RunningWindows11OrGreater())
|
|
return;
|
|
|
|
std::optional<unsigned> Socket = compute_cpu_socket(ThreadPoolNum);
|
|
if (!Socket)
|
|
return;
|
|
ArrayRef<ProcessorGroup> Groups = getProcessorGroups();
|
|
GROUP_AFFINITY Affinity{};
|
|
Affinity.Group = Groups[*Socket].ID;
|
|
Affinity.Mask = Groups[*Socket].Affinity;
|
|
SetThreadGroupAffinity(GetCurrentThread(), &Affinity, nullptr);
|
|
}
|
|
|
|
llvm::BitVector llvm::get_thread_affinity_mask() {
|
|
GROUP_AFFINITY Affinity{};
|
|
GetThreadGroupAffinity(GetCurrentThread(), &Affinity);
|
|
|
|
static unsigned All =
|
|
aggregate(getProcessorGroups(),
|
|
[](const ProcessorGroup &G) { return G.AllThreads; });
|
|
|
|
unsigned StartOffset =
|
|
aggregate(getProcessorGroups(), [&](const ProcessorGroup &G) {
|
|
return G.ID < Affinity.Group ? G.AllThreads : 0;
|
|
});
|
|
|
|
llvm::BitVector V;
|
|
V.resize(All);
|
|
for (unsigned I = 0; I < sizeof(KAFFINITY) * 8; ++I) {
|
|
if ((Affinity.Mask >> I) & 1)
|
|
V.set(StartOffset + I);
|
|
}
|
|
return V;
|
|
}
|
|
|
|
unsigned llvm::get_cpus() { return getProcessorGroups().size(); }
|