The CFL Steens/Anders alias analysis passes are not enabled by default, and to the best of my knowledge have no pathway towards ever being enabled by default. The last significant interest in these passes seems to date back to 2016. Given the little maintenance these have seen in recent times, I also have very little confidence in the correctness of these passes. I don't think we should keep these in-tree. Differential Revision: https://reviews.llvm.org/D139703
518 lines
21 KiB
C++
518 lines
21 KiB
C++
//===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the PassManagerBuilder class, which is used to set up a
|
|
// "standard" optimization sequence suitable for languages like C and C++.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
|
|
#include "llvm-c/Transforms/PassManagerBuilder.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/ScopedNoAliasAA.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include "llvm/Target/CGPassBuilderOption.h"
|
|
#include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Transforms/IPO/Attributor.h"
|
|
#include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
|
|
#include "llvm/Transforms/IPO/FunctionAttrs.h"
|
|
#include "llvm/Transforms/IPO/InferFunctionAttrs.h"
|
|
#include "llvm/Transforms/InstCombine/InstCombine.h"
|
|
#include "llvm/Transforms/Instrumentation.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Scalar/GVN.h"
|
|
#include "llvm/Transforms/Scalar/LICM.h"
|
|
#include "llvm/Transforms/Scalar/LoopUnrollPass.h"
|
|
#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
|
|
#include "llvm/Transforms/Utils.h"
|
|
#include "llvm/Transforms/Vectorize.h"
|
|
|
|
using namespace llvm;
|
|
|
|
PassManagerBuilder::PassManagerBuilder() {
|
|
OptLevel = 2;
|
|
SizeLevel = 0;
|
|
LibraryInfo = nullptr;
|
|
Inliner = nullptr;
|
|
DisableUnrollLoops = false;
|
|
SLPVectorize = false;
|
|
LoopVectorize = true;
|
|
LoopsInterleaved = true;
|
|
LicmMssaOptCap = SetLicmMssaOptCap;
|
|
LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap;
|
|
DisableGVNLoadPRE = false;
|
|
ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll;
|
|
VerifyInput = false;
|
|
VerifyOutput = false;
|
|
MergeFunctions = false;
|
|
DivergentTarget = false;
|
|
CallGraphProfile = true;
|
|
}
|
|
|
|
PassManagerBuilder::~PassManagerBuilder() {
|
|
delete LibraryInfo;
|
|
delete Inliner;
|
|
}
|
|
|
|
void PassManagerBuilder::addInitialAliasAnalysisPasses(
|
|
legacy::PassManagerBase &PM) const {
|
|
// Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
|
|
// BasicAliasAnalysis wins if they disagree. This is intended to help
|
|
// support "obvious" type-punning idioms.
|
|
PM.add(createTypeBasedAAWrapperPass());
|
|
PM.add(createScopedNoAliasAAWrapperPass());
|
|
}
|
|
|
|
void PassManagerBuilder::populateFunctionPassManager(
|
|
legacy::FunctionPassManager &FPM) {
|
|
// Add LibraryInfo if we have some.
|
|
if (LibraryInfo)
|
|
FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
|
|
|
|
if (OptLevel == 0) return;
|
|
|
|
addInitialAliasAnalysisPasses(FPM);
|
|
|
|
// Lower llvm.expect to metadata before attempting transforms.
|
|
// Compare/branch metadata may alter the behavior of passes like SimplifyCFG.
|
|
FPM.add(createLowerExpectIntrinsicPass());
|
|
FPM.add(createCFGSimplificationPass());
|
|
FPM.add(createSROAPass());
|
|
FPM.add(createEarlyCSEPass());
|
|
}
|
|
|
|
void PassManagerBuilder::addFunctionSimplificationPasses(
|
|
legacy::PassManagerBase &MPM) {
|
|
// Start of function pass.
|
|
// Break up aggregate allocas, using SSAUpdater.
|
|
assert(OptLevel >= 1 && "Calling function optimizer with no optimization level!");
|
|
MPM.add(createSROAPass());
|
|
MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies
|
|
|
|
if (OptLevel > 1) {
|
|
// Speculative execution if the target has divergent branches; otherwise nop.
|
|
MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass());
|
|
|
|
MPM.add(createJumpThreadingPass()); // Thread jumps.
|
|
MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
|
|
}
|
|
MPM.add(
|
|
createCFGSimplificationPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
|
|
true))); // Merge & remove BBs
|
|
// Combine silly seq's
|
|
MPM.add(createInstructionCombiningPass());
|
|
if (SizeLevel == 0)
|
|
MPM.add(createLibCallsShrinkWrapPass());
|
|
|
|
// TODO: Investigate the cost/benefit of tail call elimination on debugging.
|
|
if (OptLevel > 1)
|
|
MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
|
|
MPM.add(
|
|
createCFGSimplificationPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
|
|
true))); // Merge & remove BBs
|
|
MPM.add(createReassociatePass()); // Reassociate expressions
|
|
|
|
// Begin the loop pass pipeline.
|
|
|
|
// The simple loop unswitch pass relies on separate cleanup passes. Schedule
|
|
// them first so when we re-process a loop they run before other loop
|
|
// passes.
|
|
MPM.add(createLoopInstSimplifyPass());
|
|
MPM.add(createLoopSimplifyCFGPass());
|
|
|
|
// Try to remove as much code from the loop header as possible,
|
|
// to reduce amount of IR that will have to be duplicated. However,
|
|
// do not perform speculative hoisting the first time as LICM
|
|
// will destroy metadata that may not need to be destroyed if run
|
|
// after loop rotation.
|
|
// TODO: Investigate promotion cap for O1.
|
|
MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
|
|
/*AllowSpeculation=*/false));
|
|
// Rotate Loop - disable header duplication at -Oz
|
|
MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1, false));
|
|
// TODO: Investigate promotion cap for O1.
|
|
MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
|
|
/*AllowSpeculation=*/true));
|
|
MPM.add(createSimpleLoopUnswitchLegacyPass(OptLevel == 3));
|
|
// FIXME: We break the loop pass pipeline here in order to do full
|
|
// simplifycfg. Eventually loop-simplifycfg should be enhanced to replace the
|
|
// need for this.
|
|
MPM.add(createCFGSimplificationPass(
|
|
SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
|
|
MPM.add(createInstructionCombiningPass());
|
|
// We resume loop passes creating a second loop pipeline here.
|
|
MPM.add(createLoopIdiomPass()); // Recognize idioms like memset.
|
|
MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars
|
|
MPM.add(createLoopDeletionPass()); // Delete dead loops
|
|
|
|
// Unroll small loops and perform peeling.
|
|
MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
|
|
ForgetAllSCEVInLoopUnroll));
|
|
// This ends the loop pass pipelines.
|
|
|
|
// Break up allocas that may now be splittable after loop unrolling.
|
|
MPM.add(createSROAPass());
|
|
|
|
if (OptLevel > 1) {
|
|
MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
|
|
MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
|
|
}
|
|
MPM.add(createSCCPPass()); // Constant prop with SCCP
|
|
|
|
// Delete dead bit computations (instcombine runs after to fold away the dead
|
|
// computations, and then ADCE will run later to exploit any new DCE
|
|
// opportunities that creates).
|
|
MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations
|
|
|
|
// Run instcombine after redundancy elimination to exploit opportunities
|
|
// opened up by them.
|
|
MPM.add(createInstructionCombiningPass());
|
|
if (OptLevel > 1) {
|
|
MPM.add(createJumpThreadingPass()); // Thread jumps
|
|
MPM.add(createCorrelatedValuePropagationPass());
|
|
}
|
|
MPM.add(createAggressiveDCEPass()); // Delete dead instructions
|
|
|
|
MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset
|
|
// TODO: Investigate if this is too expensive at O1.
|
|
if (OptLevel > 1) {
|
|
MPM.add(createDeadStoreEliminationPass()); // Delete dead stores
|
|
MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
|
|
/*AllowSpeculation=*/true));
|
|
}
|
|
|
|
// Merge & remove BBs and sink & hoist common instructions.
|
|
MPM.add(createCFGSimplificationPass(
|
|
SimplifyCFGOptions().hoistCommonInsts(true).sinkCommonInsts(true)));
|
|
// Clean up after everything.
|
|
MPM.add(createInstructionCombiningPass());
|
|
}
|
|
|
|
/// FIXME: Should LTO cause any differences to this set of passes?
|
|
void PassManagerBuilder::addVectorPasses(legacy::PassManagerBase &PM,
|
|
bool IsFullLTO) {
|
|
PM.add(createLoopVectorizePass(!LoopsInterleaved, !LoopVectorize));
|
|
|
|
if (IsFullLTO) {
|
|
// The vectorizer may have significantly shortened a loop body; unroll
|
|
// again. Unroll small loops to hide loop backedge latency and saturate any
|
|
// parallel execution resources of an out-of-order processor. We also then
|
|
// need to clean up redundancies and loop invariant code.
|
|
// FIXME: It would be really good to use a loop-integrated instruction
|
|
// combiner for cleanup here so that the unrolling and LICM can be pipelined
|
|
// across the loop nests.
|
|
PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
|
|
ForgetAllSCEVInLoopUnroll));
|
|
PM.add(createWarnMissedTransformationsPass());
|
|
}
|
|
|
|
if (!IsFullLTO) {
|
|
// Eliminate loads by forwarding stores from the previous iteration to loads
|
|
// of the current iteration.
|
|
PM.add(createLoopLoadEliminationPass());
|
|
}
|
|
// Cleanup after the loop optimization passes.
|
|
PM.add(createInstructionCombiningPass());
|
|
|
|
// Now that we've formed fast to execute loop structures, we do further
|
|
// optimizations. These are run afterward as they might block doing complex
|
|
// analyses and transforms such as what are needed for loop vectorization.
|
|
|
|
// Cleanup after loop vectorization, etc. Simplification passes like CVP and
|
|
// GVN, loop transforms, and others have already run, so it's now better to
|
|
// convert to more optimized IR using more aggressive simplify CFG options.
|
|
// The extra sinking transform can create larger basic blocks, so do this
|
|
// before SLP vectorization.
|
|
PM.add(createCFGSimplificationPass(SimplifyCFGOptions()
|
|
.forwardSwitchCondToPhi(true)
|
|
.convertSwitchRangeToICmp(true)
|
|
.convertSwitchToLookupTable(true)
|
|
.needCanonicalLoops(false)
|
|
.hoistCommonInsts(true)
|
|
.sinkCommonInsts(true)));
|
|
|
|
if (IsFullLTO) {
|
|
PM.add(createSCCPPass()); // Propagate exposed constants
|
|
PM.add(createInstructionCombiningPass()); // Clean up again
|
|
PM.add(createBitTrackingDCEPass());
|
|
}
|
|
|
|
// Optimize parallel scalar instruction chains into SIMD instructions.
|
|
if (SLPVectorize) {
|
|
PM.add(createSLPVectorizerPass());
|
|
}
|
|
|
|
// Enhance/cleanup vector code.
|
|
PM.add(createVectorCombinePass());
|
|
|
|
if (!IsFullLTO) {
|
|
PM.add(createInstructionCombiningPass());
|
|
|
|
// Unroll small loops
|
|
PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
|
|
ForgetAllSCEVInLoopUnroll));
|
|
|
|
if (!DisableUnrollLoops) {
|
|
// LoopUnroll may generate some redundency to cleanup.
|
|
PM.add(createInstructionCombiningPass());
|
|
|
|
// Runtime unrolling will introduce runtime check in loop prologue. If the
|
|
// unrolled loop is a inner loop, then the prologue will be inside the
|
|
// outer loop. LICM pass can help to promote the runtime check out if the
|
|
// checked value is loop invariant.
|
|
PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
|
|
/*AllowSpeculation=*/true));
|
|
}
|
|
|
|
PM.add(createWarnMissedTransformationsPass());
|
|
}
|
|
|
|
// After vectorization and unrolling, assume intrinsics may tell us more
|
|
// about pointer alignments.
|
|
PM.add(createAlignmentFromAssumptionsPass());
|
|
|
|
if (IsFullLTO)
|
|
PM.add(createInstructionCombiningPass());
|
|
}
|
|
|
|
void PassManagerBuilder::populateModulePassManager(
|
|
legacy::PassManagerBase &MPM) {
|
|
MPM.add(createAnnotation2MetadataLegacyPass());
|
|
|
|
// Allow forcing function attributes as a debugging and tuning aid.
|
|
MPM.add(createForceFunctionAttrsLegacyPass());
|
|
|
|
// If all optimizations are disabled, just run the always-inline pass and,
|
|
// if enabled, the function merging pass.
|
|
if (OptLevel == 0) {
|
|
if (Inliner) {
|
|
MPM.add(Inliner);
|
|
Inliner = nullptr;
|
|
}
|
|
|
|
// FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
|
|
// creates a CGSCC pass manager, but we don't want to add extensions into
|
|
// that pass manager. To prevent this we insert a no-op module pass to reset
|
|
// the pass manager to get the same behavior as EP_OptimizerLast in non-O0
|
|
// builds. The function merging pass is
|
|
if (MergeFunctions)
|
|
MPM.add(createMergeFunctionsPass());
|
|
return;
|
|
}
|
|
|
|
// Add LibraryInfo if we have some.
|
|
if (LibraryInfo)
|
|
MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
|
|
|
|
addInitialAliasAnalysisPasses(MPM);
|
|
|
|
// Infer attributes about declarations if possible.
|
|
MPM.add(createInferFunctionAttrsLegacyPass());
|
|
|
|
if (OptLevel > 2)
|
|
MPM.add(createCallSiteSplittingPass());
|
|
|
|
MPM.add(createIPSCCPPass()); // IP SCCP
|
|
MPM.add(createCalledValuePropagationPass());
|
|
|
|
MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
|
|
// Promote any localized global vars.
|
|
MPM.add(createPromoteMemoryToRegisterPass());
|
|
|
|
MPM.add(createDeadArgEliminationPass()); // Dead argument elimination
|
|
|
|
MPM.add(createInstructionCombiningPass()); // Clean up after IPCP & DAE
|
|
MPM.add(
|
|
createCFGSimplificationPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
|
|
true))); // Clean up after IPCP & DAE
|
|
|
|
// We add a module alias analysis pass here. In part due to bugs in the
|
|
// analysis infrastructure this "works" in that the analysis stays alive
|
|
// for the entire SCC pass run below.
|
|
MPM.add(createGlobalsAAWrapperPass());
|
|
|
|
// Start of CallGraph SCC passes.
|
|
bool RunInliner = false;
|
|
if (Inliner) {
|
|
MPM.add(Inliner);
|
|
Inliner = nullptr;
|
|
RunInliner = true;
|
|
}
|
|
|
|
MPM.add(createPostOrderFunctionAttrsLegacyPass());
|
|
|
|
addFunctionSimplificationPasses(MPM);
|
|
|
|
// FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
|
|
// pass manager that we are specifically trying to avoid. To prevent this
|
|
// we must insert a no-op module pass to reset the pass manager.
|
|
MPM.add(createBarrierNoopPass());
|
|
|
|
if (OptLevel > 1)
|
|
// Remove avail extern fns and globals definitions if we aren't
|
|
// compiling an object file for later LTO. For LTO we want to preserve
|
|
// these so they are eligible for inlining at link-time. Note if they
|
|
// are unreferenced they will be removed by GlobalDCE later, so
|
|
// this only impacts referenced available externally globals.
|
|
// Eventually they will be suppressed during codegen, but eliminating
|
|
// here enables more opportunity for GlobalDCE as it may make
|
|
// globals referenced by available external functions dead
|
|
// and saves running remaining passes on the eliminated functions.
|
|
MPM.add(createEliminateAvailableExternallyPass());
|
|
|
|
MPM.add(createReversePostOrderFunctionAttrsPass());
|
|
|
|
// The inliner performs some kind of dead code elimination as it goes,
|
|
// but there are cases that are not really caught by it. We might
|
|
// at some point consider teaching the inliner about them, but it
|
|
// is OK for now to run GlobalOpt + GlobalDCE in tandem as their
|
|
// benefits generally outweight the cost, making the whole pipeline
|
|
// faster.
|
|
if (RunInliner) {
|
|
MPM.add(createGlobalOptimizerPass());
|
|
MPM.add(createGlobalDCEPass());
|
|
}
|
|
|
|
// We add a fresh GlobalsModRef run at this point. This is particularly
|
|
// useful as the above will have inlined, DCE'ed, and function-attr
|
|
// propagated everything. We should at this point have a reasonably minimal
|
|
// and richly annotated call graph. By computing aliasing and mod/ref
|
|
// information for all local globals here, the late loop passes and notably
|
|
// the vectorizer will be able to use them to help recognize vectorizable
|
|
// memory operations.
|
|
//
|
|
// Note that this relies on a bug in the pass manager which preserves
|
|
// a module analysis into a function pass pipeline (and throughout it) so
|
|
// long as the first function pass doesn't invalidate the module analysis.
|
|
// Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for
|
|
// this to work. Fortunately, it is trivial to preserve AliasAnalysis
|
|
// (doing nothing preserves it as it is required to be conservatively
|
|
// correct in the face of IR changes).
|
|
MPM.add(createGlobalsAAWrapperPass());
|
|
|
|
MPM.add(createFloat2IntPass());
|
|
MPM.add(createLowerConstantIntrinsicsPass());
|
|
|
|
// Re-rotate loops in all our loop nests. These may have fallout out of
|
|
// rotated form due to GVN or other transformations, and the vectorizer relies
|
|
// on the rotated form. Disable header duplication at -Oz.
|
|
MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1, false));
|
|
|
|
// Distribute loops to allow partial vectorization. I.e. isolate dependences
|
|
// into separate loop that would otherwise inhibit vectorization. This is
|
|
// currently only performed for loops marked with the metadata
|
|
// llvm.loop.distribute=true or when -enable-loop-distribute is specified.
|
|
MPM.add(createLoopDistributePass());
|
|
|
|
addVectorPasses(MPM, /* IsFullLTO */ false);
|
|
|
|
// FIXME: We shouldn't bother with this anymore.
|
|
MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes
|
|
|
|
// GlobalOpt already deletes dead functions and globals, at -O2 try a
|
|
// late pass of GlobalDCE. It is capable of deleting dead cycles.
|
|
if (OptLevel > 1) {
|
|
MPM.add(createGlobalDCEPass()); // Remove dead fns and globals.
|
|
MPM.add(createConstantMergePass()); // Merge dup global constants
|
|
}
|
|
|
|
if (MergeFunctions)
|
|
MPM.add(createMergeFunctionsPass());
|
|
|
|
// LoopSink pass sinks instructions hoisted by LICM, which serves as a
|
|
// canonicalization pass that enables other optimizations. As a result,
|
|
// LoopSink pass needs to be a very late IR pass to avoid undoing LICM
|
|
// result too early.
|
|
MPM.add(createLoopSinkPass());
|
|
// Get rid of LCSSA nodes.
|
|
MPM.add(createInstSimplifyLegacyPass());
|
|
|
|
// This hoists/decomposes div/rem ops. It should run after other sink/hoist
|
|
// passes to avoid re-sinking, but before SimplifyCFG because it can allow
|
|
// flattening of blocks.
|
|
MPM.add(createDivRemPairsPass());
|
|
|
|
// LoopSink (and other loop passes since the last simplifyCFG) might have
|
|
// resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
|
|
MPM.add(createCFGSimplificationPass(
|
|
SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
|
|
}
|
|
|
|
LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() {
|
|
PassManagerBuilder *PMB = new PassManagerBuilder();
|
|
return wrap(PMB);
|
|
}
|
|
|
|
void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) {
|
|
PassManagerBuilder *Builder = unwrap(PMB);
|
|
delete Builder;
|
|
}
|
|
|
|
void
|
|
LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB,
|
|
unsigned OptLevel) {
|
|
PassManagerBuilder *Builder = unwrap(PMB);
|
|
Builder->OptLevel = OptLevel;
|
|
}
|
|
|
|
void
|
|
LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB,
|
|
unsigned SizeLevel) {
|
|
PassManagerBuilder *Builder = unwrap(PMB);
|
|
Builder->SizeLevel = SizeLevel;
|
|
}
|
|
|
|
void
|
|
LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB,
|
|
LLVMBool Value) {
|
|
// NOTE: The DisableUnitAtATime switch has been removed.
|
|
}
|
|
|
|
void
|
|
LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB,
|
|
LLVMBool Value) {
|
|
PassManagerBuilder *Builder = unwrap(PMB);
|
|
Builder->DisableUnrollLoops = Value;
|
|
}
|
|
|
|
void
|
|
LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB,
|
|
LLVMBool Value) {
|
|
// NOTE: The simplify-libcalls pass has been removed.
|
|
}
|
|
|
|
void
|
|
LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB,
|
|
unsigned Threshold) {
|
|
PassManagerBuilder *Builder = unwrap(PMB);
|
|
Builder->Inliner = createFunctionInliningPass(Threshold);
|
|
}
|
|
|
|
void
|
|
LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB,
|
|
LLVMPassManagerRef PM) {
|
|
PassManagerBuilder *Builder = unwrap(PMB);
|
|
legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM);
|
|
Builder->populateFunctionPassManager(*FPM);
|
|
}
|
|
|
|
void
|
|
LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB,
|
|
LLVMPassManagerRef PM) {
|
|
PassManagerBuilder *Builder = unwrap(PMB);
|
|
legacy::PassManagerBase *MPM = unwrap(PM);
|
|
Builder->populateModulePassManager(*MPM);
|
|
}
|