Files
clang-p2996/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
Sanjay Patel 21d3871b7c [InstCombine] fold not-shift of signbit to icmp+zext, part 2
Follow-up to:
6c39a3aae1

That converted a pattern with ashr directly to icmp+zext, and
this updates the pattern that we used to convert to.

This canonicalizes to icmp for better analysis in the minimum case
and shortens patterns where the source type is not the same as dest type:
https://alive2.llvm.org/ce/z/tpXJ64
https://alive2.llvm.org/ce/z/dQ405O

This requires an adjustment to an icmp transform to avoid infinite looping.
2023-01-08 12:04:09 -05:00

1529 lines
62 KiB
C++

//===- InstCombineShifts.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the visitShl, visitLShr, and visitAShr functions.
//
//===----------------------------------------------------------------------===//
#include "InstCombineInternal.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "instcombine"
bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1,
Value *ShAmt1) {
// We have two shift amounts from two different shifts. The types of those
// shift amounts may not match. If that's the case let's bailout now..
if (ShAmt0->getType() != ShAmt1->getType())
return false;
// As input, we have the following pattern:
// Sh0 (Sh1 X, Q), K
// We want to rewrite that as:
// Sh x, (Q+K) iff (Q+K) u< bitwidth(x)
// While we know that originally (Q+K) would not overflow
// (because 2 * (N-1) u<= iN -1), we have looked past extensions of
// shift amounts. so it may now overflow in smaller bitwidth.
// To ensure that does not happen, we need to ensure that the total maximal
// shift amount is still representable in that smaller bit width.
unsigned MaximalPossibleTotalShiftAmount =
(Sh0->getType()->getScalarSizeInBits() - 1) +
(Sh1->getType()->getScalarSizeInBits() - 1);
APInt MaximalRepresentableShiftAmount =
APInt::getAllOnes(ShAmt0->getType()->getScalarSizeInBits());
return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount);
}
// Given pattern:
// (x shiftopcode Q) shiftopcode K
// we should rewrite it as
// x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x) and
//
// This is valid for any shift, but they must be identical, and we must be
// careful in case we have (zext(Q)+zext(K)) and look past extensions,
// (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus.
//
// AnalyzeForSignBitExtraction indicates that we will only analyze whether this
// pattern has any 2 right-shifts that sum to 1 less than original bit width.
Value *InstCombinerImpl::reassociateShiftAmtsOfTwoSameDirectionShifts(
BinaryOperator *Sh0, const SimplifyQuery &SQ,
bool AnalyzeForSignBitExtraction) {
// Look for a shift of some instruction, ignore zext of shift amount if any.
Instruction *Sh0Op0;
Value *ShAmt0;
if (!match(Sh0,
m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
return nullptr;
// If there is a truncation between the two shifts, we must make note of it
// and look through it. The truncation imposes additional constraints on the
// transform.
Instruction *Sh1;
Value *Trunc = nullptr;
match(Sh0Op0,
m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)),
m_Instruction(Sh1)));
// Inner shift: (x shiftopcode ShAmt1)
// Like with other shift, ignore zext of shift amount if any.
Value *X, *ShAmt1;
if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
return nullptr;
// Verify that it would be safe to try to add those two shift amounts.
if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1))
return nullptr;
// We are only looking for signbit extraction if we have two right shifts.
bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
match(Sh1, m_Shr(m_Value(), m_Value()));
// ... and if it's not two right-shifts, we know the answer already.
if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
return nullptr;
// The shift opcodes must be identical, unless we are just checking whether
// this pattern can be interpreted as a sign-bit-extraction.
Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
return nullptr;
// If we saw truncation, we'll need to produce extra instruction,
// and for that one of the operands of the shift must be one-use,
// unless of course we don't actually plan to produce any instructions here.
if (Trunc && !AnalyzeForSignBitExtraction &&
!match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
return nullptr;
// Can we fold (ShAmt0+ShAmt1) ?
auto *NewShAmt = dyn_cast_or_null<Constant>(
simplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
SQ.getWithInstruction(Sh0)));
if (!NewShAmt)
return nullptr; // Did not simplify.
unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
unsigned XBitWidth = X->getType()->getScalarSizeInBits();
// Is the new shift amount smaller than the bit width of inner/new shift?
if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
APInt(NewShAmtBitWidth, XBitWidth))))
return nullptr; // FIXME: could perform constant-folding.
// If there was a truncation, and we have a right-shift, we can only fold if
// we are left with the original sign bit. Likewise, if we were just checking
// that this is a sighbit extraction, this is the place to check it.
// FIXME: zero shift amount is also legal here, but we can't *easily* check
// more than one predicate so it's not really worth it.
if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
// If it's not a sign bit extraction, then we're done.
if (!match(NewShAmt,
m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
APInt(NewShAmtBitWidth, XBitWidth - 1))))
return nullptr;
// If it is, and that was the question, return the base value.
if (AnalyzeForSignBitExtraction)
return X;
}
assert(IdenticalShOpcodes && "Should not get here with different shifts.");
// All good, we can do this fold.
NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType());
BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);
// The flags can only be propagated if there wasn't a trunc.
if (!Trunc) {
// If the pattern did not involve trunc, and both of the original shifts
// had the same flag set, preserve the flag.
if (ShiftOpcode == Instruction::BinaryOps::Shl) {
NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
Sh1->hasNoUnsignedWrap());
NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
Sh1->hasNoSignedWrap());
} else {
NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
}
}
Instruction *Ret = NewShift;
if (Trunc) {
Builder.Insert(NewShift);
Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
}
return Ret;
}
// If we have some pattern that leaves only some low bits set, and then performs
// left-shift of those bits, if none of the bits that are left after the final
// shift are modified by the mask, we can omit the mask.
//
// There are many variants to this pattern:
// a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
// b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt
// c) (x & (-1 l>> MaskShAmt)) << ShiftShAmt
// d) (x & ((-1 << MaskShAmt) l>> MaskShAmt)) << ShiftShAmt
// e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
// f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
// All these patterns can be simplified to just:
// x << ShiftShAmt
// iff:
// a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
// c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
static Instruction *
dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift,
const SimplifyQuery &Q,
InstCombiner::BuilderTy &Builder) {
assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&
"The input must be 'shl'!");
Value *Masked, *ShiftShAmt;
match(OuterShift,
m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt))));
// *If* there is a truncation between an outer shift and a possibly-mask,
// then said truncation *must* be one-use, else we can't perform the fold.
Value *Trunc;
if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) &&
!Trunc->hasOneUse())
return nullptr;
Type *NarrowestTy = OuterShift->getType();
Type *WidestTy = Masked->getType();
bool HadTrunc = WidestTy != NarrowestTy;
// The mask must be computed in a type twice as wide to ensure
// that no bits are lost if the sum-of-shifts is wider than the base type.
Type *ExtendedTy = WidestTy->getExtendedType();
Value *MaskShAmt;
// ((1 << MaskShAmt) - 1)
auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
// (~(-1 << maskNbits))
auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes());
// (-1 l>> MaskShAmt)
auto MaskC = m_LShr(m_AllOnes(), m_Value(MaskShAmt));
// ((-1 << MaskShAmt) l>> MaskShAmt)
auto MaskD =
m_LShr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));
Value *X;
Constant *NewMask;
if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
// Peek through an optional zext of the shift amount.
match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
// Verify that it would be safe to try to add those two shift amounts.
if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
MaskShAmt))
return nullptr;
// Can we simplify (MaskShAmt+ShiftShAmt) ?
auto *SumOfShAmts = dyn_cast_or_null<Constant>(simplifyAddInst(
MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
if (!SumOfShAmts)
return nullptr; // Did not simplify.
// In this pattern SumOfShAmts correlates with the number of low bits
// that shall remain in the root value (OuterShift).
// An extend of an undef value becomes zero because the high bits are never
// completely unknown. Replace the `undef` shift amounts with final
// shift bitwidth to ensure that the value remains undef when creating the
// subsequent shift op.
SumOfShAmts = Constant::replaceUndefsWith(
SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
ExtendedTy->getScalarSizeInBits()));
auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy);
// And compute the mask as usual: ~(-1 << (SumOfShAmts))
auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
auto *ExtendedInvertedMask =
ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts);
NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
} else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
m_Deferred(MaskShAmt)))) {
// Peek through an optional zext of the shift amount.
match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
// Verify that it would be safe to try to add those two shift amounts.
if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
MaskShAmt))
return nullptr;
// Can we simplify (ShiftShAmt-MaskShAmt) ?
auto *ShAmtsDiff = dyn_cast_or_null<Constant>(simplifySubInst(
ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
if (!ShAmtsDiff)
return nullptr; // Did not simplify.
// In this pattern ShAmtsDiff correlates with the number of high bits that
// shall be unset in the root value (OuterShift).
// An extend of an undef value becomes zero because the high bits are never
// completely unknown. Replace the `undef` shift amounts with negated
// bitwidth of innermost shift to ensure that the value remains undef when
// creating the subsequent shift op.
unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
ShAmtsDiff = Constant::replaceUndefsWith(
ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
-WidestTyBitWidth));
auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt(
ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
WidestTyBitWidth,
/*isSigned=*/false),
ShAmtsDiff),
ExtendedTy);
// And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
NewMask =
ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear);
} else
return nullptr; // Don't know anything about this pattern.
NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);
// Does this mask has any unset bits? If not then we can just not apply it.
bool NeedMask = !match(NewMask, m_AllOnes());
// If we need to apply a mask, there are several more restrictions we have.
if (NeedMask) {
// The old masking instruction must go away.
if (!Masked->hasOneUse())
return nullptr;
// The original "masking" instruction must not have been`ashr`.
if (match(Masked, m_AShr(m_Value(), m_Value())))
return nullptr;
}
// If we need to apply truncation, let's do it first, since we can.
// We have already ensured that the old truncation will go away.
if (HadTrunc)
X = Builder.CreateTrunc(X, NarrowestTy);
// No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
// We didn't change the Type of this outermost shift, so we can just do it.
auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
OuterShift->getOperand(1));
if (!NeedMask)
return NewShift;
Builder.Insert(NewShift);
return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
}
/// If we have a shift-by-constant of a bitwise logic op that itself has a
/// shift-by-constant operand with identical opcode, we may be able to convert
/// that into 2 independent shifts followed by the logic op. This eliminates a
/// a use of an intermediate value (reduces dependency chain).
static Instruction *foldShiftOfShiftedLogic(BinaryOperator &I,
InstCombiner::BuilderTy &Builder) {
assert(I.isShift() && "Expected a shift as input");
auto *LogicInst = dyn_cast<BinaryOperator>(I.getOperand(0));
if (!LogicInst || !LogicInst->isBitwiseLogicOp() || !LogicInst->hasOneUse())
return nullptr;
Constant *C0, *C1;
if (!match(I.getOperand(1), m_Constant(C1)))
return nullptr;
Instruction::BinaryOps ShiftOpcode = I.getOpcode();
Type *Ty = I.getType();
// Find a matching one-use shift by constant. The fold is not valid if the sum
// of the shift values equals or exceeds bitwidth.
// TODO: Remove the one-use check if the other logic operand (Y) is constant.
Value *X, *Y;
auto matchFirstShift = [&](Value *V) {
APInt Threshold(Ty->getScalarSizeInBits(), Ty->getScalarSizeInBits());
return match(V, m_BinOp(ShiftOpcode, m_Value(), m_Value())) &&
match(V, m_OneUse(m_Shift(m_Value(X), m_Constant(C0)))) &&
match(ConstantExpr::getAdd(C0, C1),
m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
};
// Logic ops are commutative, so check each operand for a match.
if (matchFirstShift(LogicInst->getOperand(0)))
Y = LogicInst->getOperand(1);
else if (matchFirstShift(LogicInst->getOperand(1)))
Y = LogicInst->getOperand(0);
else
return nullptr;
// shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1);
Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC);
Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, I.getOperand(1));
return BinaryOperator::Create(LogicInst->getOpcode(), NewShift1, NewShift2);
}
Instruction *InstCombinerImpl::commonShiftTransforms(BinaryOperator &I) {
if (Instruction *Phi = foldBinopWithPhiOperands(I))
return Phi;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
assert(Op0->getType() == Op1->getType());
Type *Ty = I.getType();
// If the shift amount is a one-use `sext`, we can demote it to `zext`.
Value *Y;
if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
Value *NewExt = Builder.CreateZExt(Y, Ty, Op1->getName());
return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
}
// See if we can fold away this shift.
if (SimplifyDemandedInstructionBits(I))
return &I;
// Try to fold constant and into select arguments.
if (isa<Constant>(Op0))
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
if (Constant *CUI = dyn_cast<Constant>(Op1))
if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
return Res;
if (auto *NewShift = cast_or_null<Instruction>(
reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)))
return NewShift;
// Pre-shift a constant shifted by a variable amount with constant offset:
// C shift (A add nuw C1) --> (C shift C1) shift A
Value *A;
Constant *C, *C1;
if (match(Op0, m_Constant(C)) &&
match(Op1, m_NUWAdd(m_Value(A), m_Constant(C1)))) {
Value *NewC = Builder.CreateBinOp(I.getOpcode(), C, C1);
return BinaryOperator::Create(I.getOpcode(), NewC, A);
}
unsigned BitWidth = Ty->getScalarSizeInBits();
const APInt *AC, *AddC;
// Try to pre-shift a constant shifted by a variable amount added with a
// negative number:
// C << (X - AddC) --> (C >> AddC) << X
// and
// C >> (X - AddC) --> (C << AddC) >> X
if (match(Op0, m_APInt(AC)) && match(Op1, m_Add(m_Value(A), m_APInt(AddC))) &&
AddC->isNegative() && (-*AddC).ult(BitWidth)) {
assert(!AC->isZero() && "Expected simplify of shifted zero");
unsigned PosOffset = (-*AddC).getZExtValue();
auto isSuitableForPreShift = [PosOffset, &I, AC]() {
switch (I.getOpcode()) {
default:
return false;
case Instruction::Shl:
return (I.hasNoSignedWrap() || I.hasNoUnsignedWrap()) &&
AC->eq(AC->lshr(PosOffset).shl(PosOffset));
case Instruction::LShr:
return I.isExact() && AC->eq(AC->shl(PosOffset).lshr(PosOffset));
case Instruction::AShr:
return I.isExact() && AC->eq(AC->shl(PosOffset).ashr(PosOffset));
}
};
if (isSuitableForPreShift()) {
Constant *NewC = ConstantInt::get(Ty, I.getOpcode() == Instruction::Shl
? AC->lshr(PosOffset)
: AC->shl(PosOffset));
BinaryOperator *NewShiftOp =
BinaryOperator::Create(I.getOpcode(), NewC, A);
if (I.getOpcode() == Instruction::Shl) {
NewShiftOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
} else {
NewShiftOp->setIsExact();
}
return NewShiftOp;
}
}
// X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2.
// Because shifts by negative values (which could occur if A were negative)
// are undefined.
if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) &&
match(C, m_Power2())) {
// FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
// demand the sign bit (and many others) here??
Constant *Mask = ConstantExpr::getSub(C, ConstantInt::get(Ty, 1));
Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName());
return replaceOperand(I, 1, Rem);
}
if (Instruction *Logic = foldShiftOfShiftedLogic(I, Builder))
return Logic;
return nullptr;
}
/// Return true if we can simplify two logical (either left or right) shifts
/// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
Instruction *InnerShift,
InstCombinerImpl &IC, Instruction *CxtI) {
assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
// We need constant scalar or constant splat shifts.
const APInt *InnerShiftConst;
if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
return false;
// Two logical shifts in the same direction:
// shl (shl X, C1), C2 --> shl X, C1 + C2
// lshr (lshr X, C1), C2 --> lshr X, C1 + C2
bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
if (IsInnerShl == IsOuterShl)
return true;
// Equal shift amounts in opposite directions become bitwise 'and':
// lshr (shl X, C), C --> and X, C'
// shl (lshr X, C), C --> and X, C'
if (*InnerShiftConst == OuterShAmt)
return true;
// If the 2nd shift is bigger than the 1st, we can fold:
// lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3
// shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
// but it isn't profitable unless we know the and'd out bits are already zero.
// Also, check that the inner shift is valid (less than the type width) or
// we'll crash trying to produce the bit mask for the 'and'.
unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
unsigned InnerShAmt = InnerShiftConst->getZExtValue();
unsigned MaskShift =
IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
return true;
}
return false;
}
/// See if we can compute the specified value, but shifted logically to the left
/// or right by some number of bits. This should return true if the expression
/// can be computed for the same cost as the current expression tree. This is
/// used to eliminate extraneous shifting from things like:
/// %C = shl i128 %A, 64
/// %D = shl i128 %B, 96
/// %E = or i128 %C, %D
/// %F = lshr i128 %E, 64
/// where the client will ask if E can be computed shifted right by 64-bits. If
/// this succeeds, getShiftedValue() will be called to produce the value.
static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
InstCombinerImpl &IC, Instruction *CxtI) {
// We can always evaluate constants shifted.
if (isa<Constant>(V))
return true;
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
// We can't mutate something that has multiple uses: doing so would
// require duplicating the instruction in general, which isn't profitable.
if (!I->hasOneUse()) return false;
switch (I->getOpcode()) {
default: return false;
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
// Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
case Instruction::Shl:
case Instruction::LShr:
return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(I);
Value *TrueVal = SI->getTrueValue();
Value *FalseVal = SI->getFalseValue();
return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
}
case Instruction::PHI: {
// We can change a phi if we can change all operands. Note that we never
// get into trouble with cyclic PHIs here because we only consider
// instructions with a single use.
PHINode *PN = cast<PHINode>(I);
for (Value *IncValue : PN->incoming_values())
if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
return false;
return true;
}
case Instruction::Mul: {
const APInt *MulConst;
// We can fold (shr (mul X, -(1 << C)), C) -> (and (neg X), C`)
return !IsLeftShift && match(I->getOperand(1), m_APInt(MulConst)) &&
MulConst->isNegatedPowerOf2() &&
MulConst->countTrailingZeros() == NumBits;
}
}
}
/// Fold OuterShift (InnerShift X, C1), C2.
/// See canEvaluateShiftedShift() for the constraints on these instructions.
static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
bool IsOuterShl,
InstCombiner::BuilderTy &Builder) {
bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
Type *ShType = InnerShift->getType();
unsigned TypeWidth = ShType->getScalarSizeInBits();
// We only accept shifts-by-a-constant in canEvaluateShifted().
const APInt *C1;
match(InnerShift->getOperand(1), m_APInt(C1));
unsigned InnerShAmt = C1->getZExtValue();
// Change the shift amount and clear the appropriate IR flags.
auto NewInnerShift = [&](unsigned ShAmt) {
InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
if (IsInnerShl) {
InnerShift->setHasNoUnsignedWrap(false);
InnerShift->setHasNoSignedWrap(false);
} else {
InnerShift->setIsExact(false);
}
return InnerShift;
};
// Two logical shifts in the same direction:
// shl (shl X, C1), C2 --> shl X, C1 + C2
// lshr (lshr X, C1), C2 --> lshr X, C1 + C2
if (IsInnerShl == IsOuterShl) {
// If this is an oversized composite shift, then unsigned shifts get 0.
if (InnerShAmt + OuterShAmt >= TypeWidth)
return Constant::getNullValue(ShType);
return NewInnerShift(InnerShAmt + OuterShAmt);
}
// Equal shift amounts in opposite directions become bitwise 'and':
// lshr (shl X, C), C --> and X, C'
// shl (lshr X, C), C --> and X, C'
if (InnerShAmt == OuterShAmt) {
APInt Mask = IsInnerShl
? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
: APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
ConstantInt::get(ShType, Mask));
if (auto *AndI = dyn_cast<Instruction>(And)) {
AndI->moveBefore(InnerShift);
AndI->takeName(InnerShift);
}
return And;
}
assert(InnerShAmt > OuterShAmt &&
"Unexpected opposite direction logical shift pair");
// In general, we would need an 'and' for this transform, but
// canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
// lshr (shl X, C1), C2 --> shl X, C1 - C2
// shl (lshr X, C1), C2 --> lshr X, C1 - C2
return NewInnerShift(InnerShAmt - OuterShAmt);
}
/// When canEvaluateShifted() returns true for an expression, this function
/// inserts the new computation that produces the shifted value.
static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
InstCombinerImpl &IC, const DataLayout &DL) {
// We can always evaluate constants shifted.
if (Constant *C = dyn_cast<Constant>(V)) {
if (isLeftShift)
return IC.Builder.CreateShl(C, NumBits);
else
return IC.Builder.CreateLShr(C, NumBits);
}
Instruction *I = cast<Instruction>(V);
IC.addToWorklist(I);
switch (I->getOpcode()) {
default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
// Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
I->setOperand(
0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
I->setOperand(
1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
return I;
case Instruction::Shl:
case Instruction::LShr:
return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
IC.Builder);
case Instruction::Select:
I->setOperand(
1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
I->setOperand(
2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
return I;
case Instruction::PHI: {
// We can change a phi if we can change all operands. Note that we never
// get into trouble with cyclic PHIs here because we only consider
// instructions with a single use.
PHINode *PN = cast<PHINode>(I);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
isLeftShift, IC, DL));
return PN;
}
case Instruction::Mul: {
assert(!isLeftShift && "Unexpected shift direction!");
auto *Neg = BinaryOperator::CreateNeg(I->getOperand(0));
IC.InsertNewInstWith(Neg, *I);
unsigned TypeWidth = I->getType()->getScalarSizeInBits();
APInt Mask = APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits);
auto *And = BinaryOperator::CreateAnd(Neg,
ConstantInt::get(I->getType(), Mask));
And->takeName(I);
return IC.InsertNewInstWith(And, *I);
}
}
}
// If this is a bitwise operator or add with a constant RHS we might be able
// to pull it through a shift.
static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
BinaryOperator *BO) {
switch (BO->getOpcode()) {
default:
return false; // Do not perform transform!
case Instruction::Add:
return Shift.getOpcode() == Instruction::Shl;
case Instruction::Or:
case Instruction::And:
return true;
case Instruction::Xor:
// Do not change a 'not' of logical shift because that would create a normal
// 'xor'. The 'not' is likely better for analysis, SCEV, and codegen.
return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value())));
}
}
Instruction *InstCombinerImpl::FoldShiftByConstant(Value *Op0, Constant *C1,
BinaryOperator &I) {
// (C2 << X) << C1 --> (C2 << C1) << X
// (C2 >> X) >> C1 --> (C2 >> C1) >> X
Constant *C2;
Value *X;
if (match(Op0, m_BinOp(I.getOpcode(), m_Constant(C2), m_Value(X))))
return BinaryOperator::Create(
I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), C2, C1), X);
bool IsLeftShift = I.getOpcode() == Instruction::Shl;
Type *Ty = I.getType();
unsigned TypeBits = Ty->getScalarSizeInBits();
// (X / +DivC) >> (Width - 1) --> ext (X <= -DivC)
// (X / -DivC) >> (Width - 1) --> ext (X >= +DivC)
const APInt *DivC;
if (!IsLeftShift && match(C1, m_SpecificIntAllowUndef(TypeBits - 1)) &&
match(Op0, m_SDiv(m_Value(X), m_APInt(DivC))) && !DivC->isZero() &&
!DivC->isMinSignedValue()) {
Constant *NegDivC = ConstantInt::get(Ty, -(*DivC));
ICmpInst::Predicate Pred =
DivC->isNegative() ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SLE;
Value *Cmp = Builder.CreateICmp(Pred, X, NegDivC);
auto ExtOpcode = (I.getOpcode() == Instruction::AShr) ? Instruction::SExt
: Instruction::ZExt;
return CastInst::Create(ExtOpcode, Cmp, Ty);
}
const APInt *Op1C;
if (!match(C1, m_APInt(Op1C)))
return nullptr;
assert(!Op1C->uge(TypeBits) &&
"Shift over the type width should have been removed already");
// See if we can propagate this shift into the input, this covers the trivial
// cast of lshr(shl(x,c1),c2) as well as other more complex cases.
if (I.getOpcode() != Instruction::AShr &&
canEvaluateShifted(Op0, Op1C->getZExtValue(), IsLeftShift, *this, &I)) {
LLVM_DEBUG(
dbgs() << "ICE: GetShiftedValue propagating shift through expression"
" to eliminate shift:\n IN: "
<< *Op0 << "\n SH: " << I << "\n");
return replaceInstUsesWith(
I, getShiftedValue(Op0, Op1C->getZExtValue(), IsLeftShift, *this, DL));
}
if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
return FoldedShift;
if (!Op0->hasOneUse())
return nullptr;
if (auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
// If the operand is a bitwise operator with a constant RHS, and the
// shift is the only use, we can pull it out of the shift.
const APInt *Op0C;
if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
Value *NewRHS =
Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(1), C1);
Value *NewShift =
Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), C1);
NewShift->takeName(Op0BO);
return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS);
}
}
}
// If we have a select that conditionally executes some binary operator,
// see if we can pull it the select and operator through the shift.
//
// For example, turning:
// shl (select C, (add X, C1), X), C2
// Into:
// Y = shl X, C2
// select C, (add Y, C1 << C2), Y
Value *Cond;
BinaryOperator *TBO;
Value *FalseVal;
if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
m_Value(FalseVal)))) {
const APInt *C;
if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
match(TBO->getOperand(1), m_APInt(C)) &&
canShiftBinOpWithConstantRHS(I, TBO)) {
Value *NewRHS =
Builder.CreateBinOp(I.getOpcode(), TBO->getOperand(1), C1);
Value *NewShift = Builder.CreateBinOp(I.getOpcode(), FalseVal, C1);
Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, NewRHS);
return SelectInst::Create(Cond, NewOp, NewShift);
}
}
BinaryOperator *FBO;
Value *TrueVal;
if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
m_OneUse(m_BinOp(FBO))))) {
const APInt *C;
if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
match(FBO->getOperand(1), m_APInt(C)) &&
canShiftBinOpWithConstantRHS(I, FBO)) {
Value *NewRHS =
Builder.CreateBinOp(I.getOpcode(), FBO->getOperand(1), C1);
Value *NewShift = Builder.CreateBinOp(I.getOpcode(), TrueVal, C1);
Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, NewRHS);
return SelectInst::Create(Cond, NewShift, NewOp);
}
}
return nullptr;
}
Instruction *InstCombinerImpl::visitShl(BinaryOperator &I) {
const SimplifyQuery Q = SQ.getWithInstruction(&I);
if (Value *V = simplifyShlInst(I.getOperand(0), I.getOperand(1),
I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *V = commonShiftTransforms(I))
return V;
if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder))
return V;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Type *Ty = I.getType();
unsigned BitWidth = Ty->getScalarSizeInBits();
const APInt *C;
if (match(Op1, m_APInt(C))) {
unsigned ShAmtC = C->getZExtValue();
// shl (zext X), C --> zext (shl X, C)
// This is only valid if X would have zeros shifted out.
Value *X;
if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
unsigned SrcWidth = X->getType()->getScalarSizeInBits();
if (ShAmtC < SrcWidth &&
MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmtC), 0, &I))
return new ZExtInst(Builder.CreateShl(X, ShAmtC), Ty);
}
// (X >> C) << C --> X & (-1 << C)
if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
}
const APInt *C1;
if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(C1)))) &&
C1->ult(BitWidth)) {
unsigned ShrAmt = C1->getZExtValue();
if (ShrAmt < ShAmtC) {
// If C1 < C: (X >>?,exact C1) << C --> X << (C - C1)
Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
return NewShl;
}
if (ShrAmt > ShAmtC) {
// If C1 > C: (X >>?exact C1) << C --> X >>?exact (C1 - C)
Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
auto *NewShr = BinaryOperator::Create(
cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
NewShr->setIsExact(true);
return NewShr;
}
}
if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(C1)))) &&
C1->ult(BitWidth)) {
unsigned ShrAmt = C1->getZExtValue();
if (ShrAmt < ShAmtC) {
// If C1 < C: (X >>? C1) << C --> (X << (C - C1)) & (-1 << C)
Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
Builder.Insert(NewShl);
APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
}
if (ShrAmt > ShAmtC) {
// If C1 > C: (X >>? C1) << C --> (X >>? (C1 - C)) & (-1 << C)
Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
auto *OldShr = cast<BinaryOperator>(Op0);
auto *NewShr =
BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff);
NewShr->setIsExact(OldShr->isExact());
Builder.Insert(NewShr);
APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask));
}
}
// Similar to above, but look through an intermediate trunc instruction.
BinaryOperator *Shr;
if (match(Op0, m_OneUse(m_Trunc(m_OneUse(m_BinOp(Shr))))) &&
match(Shr, m_Shr(m_Value(X), m_APInt(C1)))) {
// The larger shift direction survives through the transform.
unsigned ShrAmtC = C1->getZExtValue();
unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC;
Constant *ShiftDiffC = ConstantInt::get(X->getType(), ShDiff);
auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->getOpcode() : Instruction::Shl;
// If C1 > C:
// (trunc (X >> C1)) << C --> (trunc (X >> (C1 - C))) && (-1 << C)
// If C > C1:
// (trunc (X >> C1)) << C --> (trunc (X << (C - C1))) && (-1 << C)
Value *NewShift = Builder.CreateBinOp(ShiftOpc, X, ShiftDiffC, "sh.diff");
Value *Trunc = Builder.CreateTrunc(NewShift, Ty, "tr.sh.diff");
APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask));
}
if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
unsigned AmtSum = ShAmtC + C1->getZExtValue();
// Oversized shifts are simplified to zero in InstSimplify.
if (AmtSum < BitWidth)
// (X << C1) << C2 --> X << (C1 + C2)
return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
}
// If we have an opposite shift by the same amount, we may be able to
// reorder binops and shifts to eliminate math/logic.
auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) {
switch (BinOpcode) {
default:
return false;
case Instruction::Add:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::Sub:
// NOTE: Sub is not commutable and the tranforms below may not be valid
// when the shift-right is operand 1 (RHS) of the sub.
return true;
}
};
BinaryOperator *Op0BO;
if (match(Op0, m_OneUse(m_BinOp(Op0BO))) &&
isSuitableBinOpcode(Op0BO->getOpcode())) {
// Commute so shift-right is on LHS of the binop.
// (Y bop (X >> C)) << C -> ((X >> C) bop Y) << C
// (Y bop ((X >> C) & CC)) << C -> (((X >> C) & CC) bop Y) << C
Value *Shr = Op0BO->getOperand(0);
Value *Y = Op0BO->getOperand(1);
Value *X;
const APInt *CC;
if (Op0BO->isCommutative() && Y->hasOneUse() &&
(match(Y, m_Shr(m_Value(), m_Specific(Op1))) ||
match(Y, m_And(m_OneUse(m_Shr(m_Value(), m_Specific(Op1))),
m_APInt(CC)))))
std::swap(Shr, Y);
// ((X >> C) bop Y) << C -> (X bop (Y << C)) & (~0 << C)
if (match(Shr, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
// Y << C
Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
// (X bop (Y << C))
Value *B =
Builder.CreateBinOp(Op0BO->getOpcode(), X, YS, Shr->getName());
unsigned Op1Val = C->getLimitedValue(BitWidth);
APInt Bits = APInt::getHighBitsSet(BitWidth, BitWidth - Op1Val);
Constant *Mask = ConstantInt::get(Ty, Bits);
return BinaryOperator::CreateAnd(B, Mask);
}
// (((X >> C) & CC) bop Y) << C -> (X & (CC << C)) bop (Y << C)
if (match(Shr,
m_OneUse(m_And(m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))),
m_APInt(CC))))) {
// Y << C
Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
// X & (CC << C)
Value *M = Builder.CreateAnd(X, ConstantInt::get(Ty, CC->shl(*C)),
X->getName() + ".mask");
return BinaryOperator::Create(Op0BO->getOpcode(), M, YS);
}
}
// (C1 - X) << C --> (C1 << C) - (X << C)
if (match(Op0, m_OneUse(m_Sub(m_APInt(C1), m_Value(X))))) {
Constant *NewLHS = ConstantInt::get(Ty, C1->shl(*C));
Value *NewShift = Builder.CreateShl(X, Op1);
return BinaryOperator::CreateSub(NewLHS, NewShift);
}
// If the shifted-out value is known-zero, then this is a NUW shift.
if (!I.hasNoUnsignedWrap() &&
MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmtC), 0,
&I)) {
I.setHasNoUnsignedWrap();
return &I;
}
// If the shifted-out value is all signbits, then this is a NSW shift.
if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmtC) {
I.setHasNoSignedWrap();
return &I;
}
}
// Transform (x >> y) << y to x & (-1 << y)
// Valid for any type of right-shift.
Value *X;
if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
Value *Mask = Builder.CreateShl(AllOnes, Op1);
return BinaryOperator::CreateAnd(Mask, X);
}
Constant *C1;
if (match(Op1, m_Constant(C1))) {
Constant *C2;
Value *X;
// (X * C2) << C1 --> X * (C2 << C1)
if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
// shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1);
return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
}
}
if (match(Op0, m_One())) {
// (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
if (match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
return BinaryOperator::CreateLShr(
ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);
// The only way to shift out the 1 is with an over-shift, so that would
// be poison with or without "nuw". Undef is excluded because (undef << X)
// is not undef (it is zero).
Constant *ConstantOne = cast<Constant>(Op0);
if (!I.hasNoUnsignedWrap() && !ConstantOne->containsUndefElement()) {
I.setHasNoUnsignedWrap();
return &I;
}
}
return nullptr;
}
Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) {
if (Value *V = simplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *R = commonShiftTransforms(I))
return R;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Type *Ty = I.getType();
Value *X;
const APInt *C;
unsigned BitWidth = Ty->getScalarSizeInBits();
// (iN (~X) u>> (N - 1)) --> zext (X > -1)
if (match(Op0, m_OneUse(m_Not(m_Value(X)))) &&
match(Op1, m_SpecificIntAllowUndef(BitWidth - 1)))
return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty);
if (match(Op1, m_APInt(C))) {
unsigned ShAmtC = C->getZExtValue();
auto *II = dyn_cast<IntrinsicInst>(Op0);
if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmtC &&
(II->getIntrinsicID() == Intrinsic::ctlz ||
II->getIntrinsicID() == Intrinsic::cttz ||
II->getIntrinsicID() == Intrinsic::ctpop)) {
// ctlz.i32(x)>>5 --> zext(x == 0)
// cttz.i32(x)>>5 --> zext(x == 0)
// ctpop.i32(x)>>5 --> zext(x == -1)
bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
return new ZExtInst(Cmp, Ty);
}
Value *X;
const APInt *C1;
if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
if (C1->ult(ShAmtC)) {
unsigned ShlAmtC = C1->getZExtValue();
Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC);
if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
// (X <<nuw C1) >>u C --> X >>u (C - C1)
auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
NewLShr->setIsExact(I.isExact());
return NewLShr;
}
if (Op0->hasOneUse()) {
// (X << C1) >>u C --> (X >>u (C - C1)) & (-1 >> C)
Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
}
} else if (C1->ugt(ShAmtC)) {
unsigned ShlAmtC = C1->getZExtValue();
Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC);
if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
// (X <<nuw C1) >>u C --> X <<nuw (C1 - C)
auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
NewShl->setHasNoUnsignedWrap(true);
return NewShl;
}
if (Op0->hasOneUse()) {
// (X << C1) >>u C --> X << (C1 - C) & (-1 >> C)
Value *NewShl = Builder.CreateShl(X, ShiftDiff);
APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
}
} else {
assert(*C1 == ShAmtC);
// (X << C) >>u C --> X & (-1 >>u C)
APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
}
}
// ((X << C) + Y) >>u C --> (X + (Y >>u C)) & (-1 >>u C)
// TODO: Consolidate with the more general transform that starts from shl
// (the shifts are in the opposite order).
Value *Y;
if (match(Op0,
m_OneUse(m_c_Add(m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))),
m_Value(Y))))) {
Value *NewLshr = Builder.CreateLShr(Y, Op1);
Value *NewAdd = Builder.CreateAdd(NewLshr, X);
unsigned Op1Val = C->getLimitedValue(BitWidth);
APInt Bits = APInt::getLowBitsSet(BitWidth, BitWidth - Op1Val);
Constant *Mask = ConstantInt::get(Ty, Bits);
return BinaryOperator::CreateAnd(NewAdd, Mask);
}
if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
(!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
assert(ShAmtC < X->getType()->getScalarSizeInBits() &&
"Big shift not simplified to zero?");
// lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
Value *NewLShr = Builder.CreateLShr(X, ShAmtC);
return new ZExtInst(NewLShr, Ty);
}
if (match(Op0, m_SExt(m_Value(X)))) {
unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
// lshr (sext i1 X to iN), C --> select (X, -1 >> C, 0)
if (SrcTyBitWidth == 1) {
auto *NewC = ConstantInt::get(
Ty, APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
}
if ((!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType())) &&
Op0->hasOneUse()) {
// Are we moving the sign bit to the low bit and widening with high
// zeros? lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
if (ShAmtC == BitWidth - 1) {
Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
return new ZExtInst(NewLShr, Ty);
}
// lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
if (ShAmtC == BitWidth - SrcTyBitWidth) {
// The new shift amount can't be more than the narrow source type.
unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1);
Value *AShr = Builder.CreateAShr(X, NewShAmt);
return new ZExtInst(AShr, Ty);
}
}
}
if (ShAmtC == BitWidth - 1) {
// lshr i32 or(X,-X), 31 --> zext (X != 0)
if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
return new ZExtInst(Builder.CreateIsNotNull(X), Ty);
// lshr i32 (X -nsw Y), 31 --> zext (X < Y)
if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty);
// Check if a number is negative and odd:
// lshr i32 (srem X, 2), 31 --> and (X >> 31), X
if (match(Op0, m_OneUse(m_SRem(m_Value(X), m_SpecificInt(2))))) {
Value *Signbit = Builder.CreateLShr(X, ShAmtC);
return BinaryOperator::CreateAnd(Signbit, X);
}
}
// (X >>u C1) >>u C --> X >>u (C1 + C)
if (match(Op0, m_LShr(m_Value(X), m_APInt(C1)))) {
// Oversized shifts are simplified to zero in InstSimplify.
unsigned AmtSum = ShAmtC + C1->getZExtValue();
if (AmtSum < BitWidth)
return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
}
Instruction *TruncSrc;
if (match(Op0, m_OneUse(m_Trunc(m_Instruction(TruncSrc)))) &&
match(TruncSrc, m_LShr(m_Value(X), m_APInt(C1)))) {
unsigned SrcWidth = X->getType()->getScalarSizeInBits();
unsigned AmtSum = ShAmtC + C1->getZExtValue();
// If the combined shift fits in the source width:
// (trunc (X >>u C1)) >>u C --> and (trunc (X >>u (C1 + C)), MaskC
//
// If the first shift covers the number of bits truncated, then the
// mask instruction is eliminated (and so the use check is relaxed).
if (AmtSum < SrcWidth &&
(TruncSrc->hasOneUse() || C1->uge(SrcWidth - BitWidth))) {
Value *SumShift = Builder.CreateLShr(X, AmtSum, "sum.shift");
Value *Trunc = Builder.CreateTrunc(SumShift, Ty, I.getName());
// If the first shift does not cover the number of bits truncated, then
// we require a mask to get rid of high bits in the result.
APInt MaskC = APInt::getAllOnes(BitWidth).lshr(ShAmtC);
return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC));
}
}
const APInt *MulC;
if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC)))) {
// Look for a "splat" mul pattern - it replicates bits across each half of
// a value, so a right shift is just a mask of the low bits:
// lshr i[2N] (mul nuw X, (2^N)+1), N --> and iN X, (2^N)-1
// TODO: Generalize to allow more than just half-width shifts?
if (BitWidth > 2 && ShAmtC * 2 == BitWidth && (*MulC - 1).isPowerOf2() &&
MulC->logBase2() == ShAmtC)
return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2));
// The one-use check is not strictly necessary, but codegen may not be
// able to invert the transform and perf may suffer with an extra mul
// instruction.
if (Op0->hasOneUse()) {
APInt NewMulC = MulC->lshr(ShAmtC);
// if c is divisible by (1 << ShAmtC):
// lshr (mul nuw x, MulC), ShAmtC -> mul nuw x, (MulC >> ShAmtC)
if (MulC->eq(NewMulC.shl(ShAmtC))) {
auto *NewMul =
BinaryOperator::CreateNUWMul(X, ConstantInt::get(Ty, NewMulC));
BinaryOperator *OrigMul = cast<BinaryOperator>(Op0);
NewMul->setHasNoSignedWrap(OrigMul->hasNoSignedWrap());
return NewMul;
}
}
}
// Try to narrow bswap.
// In the case where the shift amount equals the bitwidth difference, the
// shift is eliminated.
if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::bswap>(
m_OneUse(m_ZExt(m_Value(X))))))) {
unsigned SrcWidth = X->getType()->getScalarSizeInBits();
unsigned WidthDiff = BitWidth - SrcWidth;
if (SrcWidth % 16 == 0) {
Value *NarrowSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
if (ShAmtC >= WidthDiff) {
// (bswap (zext X)) >> C --> zext (bswap X >> C')
Value *NewShift = Builder.CreateLShr(NarrowSwap, ShAmtC - WidthDiff);
return new ZExtInst(NewShift, Ty);
} else {
// (bswap (zext X)) >> C --> (zext (bswap X)) << C'
Value *NewZExt = Builder.CreateZExt(NarrowSwap, Ty);
Constant *ShiftDiff = ConstantInt::get(Ty, WidthDiff - ShAmtC);
return BinaryOperator::CreateShl(NewZExt, ShiftDiff);
}
}
}
// Reduce add-carry of bools to logic:
// ((zext BoolX) + (zext BoolY)) >> 1 --> zext (BoolX && BoolY)
Value *BoolX, *BoolY;
if (ShAmtC == 1 && match(Op0, m_Add(m_Value(X), m_Value(Y))) &&
match(X, m_ZExt(m_Value(BoolX))) && match(Y, m_ZExt(m_Value(BoolY))) &&
BoolX->getType()->isIntOrIntVectorTy(1) &&
BoolY->getType()->isIntOrIntVectorTy(1) &&
(X->hasOneUse() || Y->hasOneUse() || Op0->hasOneUse())) {
Value *And = Builder.CreateAnd(BoolX, BoolY);
return new ZExtInst(And, Ty);
}
// If the shifted-out value is known-zero, then this is an exact shift.
if (!I.isExact() &&
MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmtC), 0, &I)) {
I.setIsExact();
return &I;
}
}
// Transform (x << y) >> y to x & (-1 >> y)
if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
Value *Mask = Builder.CreateLShr(AllOnes, Op1);
return BinaryOperator::CreateAnd(Mask, X);
}
return nullptr;
}
Instruction *
InstCombinerImpl::foldVariableSignZeroExtensionOfVariableHighBitExtract(
BinaryOperator &OldAShr) {
assert(OldAShr.getOpcode() == Instruction::AShr &&
"Must be called with arithmetic right-shift instruction only.");
// Check that constant C is a splat of the element-wise bitwidth of V.
auto BitWidthSplat = [](Constant *C, Value *V) {
return match(
C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
APInt(C->getType()->getScalarSizeInBits(),
V->getType()->getScalarSizeInBits())));
};
// It should look like variable-length sign-extension on the outside:
// (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
Value *NBits;
Instruction *MaybeTrunc;
Constant *C1, *C2;
if (!match(&OldAShr,
m_AShr(m_Shl(m_Instruction(MaybeTrunc),
m_ZExtOrSelf(m_Sub(m_Constant(C1),
m_ZExtOrSelf(m_Value(NBits))))),
m_ZExtOrSelf(m_Sub(m_Constant(C2),
m_ZExtOrSelf(m_Deferred(NBits)))))) ||
!BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
return nullptr;
// There may or may not be a truncation after outer two shifts.
Instruction *HighBitExtract;
match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
bool HadTrunc = MaybeTrunc != HighBitExtract;
// And finally, the innermost part of the pattern must be a right-shift.
Value *X, *NumLowBitsToSkip;
if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
return nullptr;
// Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
Constant *C0;
if (!match(NumLowBitsToSkip,
m_ZExtOrSelf(
m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
!BitWidthSplat(C0, HighBitExtract))
return nullptr;
// Since the NBits is identical for all shifts, if the outermost and
// innermost shifts are identical, then outermost shifts are redundant.
// If we had truncation, do keep it though.
if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
return replaceInstUsesWith(OldAShr, MaybeTrunc);
// Else, if there was a truncation, then we need to ensure that one
// instruction will go away.
if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
return nullptr;
// Finally, bypass two innermost shifts, and perform the outermost shift on
// the operands of the innermost shift.
Instruction *NewAShr =
BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
if (!HadTrunc)
return NewAShr;
Builder.Insert(NewAShr);
return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
}
Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) {
if (Value *V = simplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *R = commonShiftTransforms(I))
return R;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Type *Ty = I.getType();
unsigned BitWidth = Ty->getScalarSizeInBits();
const APInt *ShAmtAPInt;
if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
unsigned ShAmt = ShAmtAPInt->getZExtValue();
// If the shift amount equals the difference in width of the destination
// and source scalar types:
// ashr (shl (zext X), C), C --> sext X
Value *X;
if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
return new SExtInst(X, Ty);
// We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
// we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
const APInt *ShOp1;
if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
ShOp1->ult(BitWidth)) {
unsigned ShlAmt = ShOp1->getZExtValue();
if (ShlAmt < ShAmt) {
// (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
NewAShr->setIsExact(I.isExact());
return NewAShr;
}
if (ShlAmt > ShAmt) {
// (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
NewShl->setHasNoSignedWrap(true);
return NewShl;
}
}
if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
ShOp1->ult(BitWidth)) {
unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
// Oversized arithmetic shifts replicate the sign bit.
AmtSum = std::min(AmtSum, BitWidth - 1);
// (X >>s C1) >>s C2 --> X >>s (C1 + C2)
return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
}
if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
(Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
// ashr (sext X), C --> sext (ashr X, C')
Type *SrcTy = X->getType();
ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
return new SExtInst(NewSh, Ty);
}
if (ShAmt == BitWidth - 1) {
// ashr i32 or(X,-X), 31 --> sext (X != 0)
if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
return new SExtInst(Builder.CreateIsNotNull(X), Ty);
// ashr i32 (X -nsw Y), 31 --> sext (X < Y)
Value *Y;
if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty);
}
// If the shifted-out value is known-zero, then this is an exact shift.
if (!I.isExact() &&
MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
I.setIsExact();
return &I;
}
}
// Prefer `-(x & 1)` over `(x << (bitwidth(x)-1)) a>> (bitwidth(x)-1)`
// as the pattern to splat the lowest bit.
// FIXME: iff X is already masked, we don't need the one-use check.
Value *X;
if (match(Op1, m_SpecificIntAllowUndef(BitWidth - 1)) &&
match(Op0, m_OneUse(m_Shl(m_Value(X),
m_SpecificIntAllowUndef(BitWidth - 1))))) {
Constant *Mask = ConstantInt::get(Ty, 1);
// Retain the knowledge about the ignored lanes.
Mask = Constant::mergeUndefsWith(
Constant::mergeUndefsWith(Mask, cast<Constant>(Op1)),
cast<Constant>(cast<Instruction>(Op0)->getOperand(1)));
X = Builder.CreateAnd(X, Mask);
return BinaryOperator::CreateNeg(X);
}
if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I))
return R;
// See if we can turn a signed shr into an unsigned shr.
if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I)) {
Instruction *Lshr = BinaryOperator::CreateLShr(Op0, Op1);
Lshr->setIsExact(I.isExact());
return Lshr;
}
// ashr (xor %x, -1), %y --> xor (ashr %x, %y), -1
if (match(Op0, m_OneUse(m_Not(m_Value(X))))) {
// Note that we must drop 'exact'-ness of the shift!
// Note that we can't keep undef's in -1 vector constant!
auto *NewAShr = Builder.CreateAShr(X, Op1, Op0->getName() + ".not");
return BinaryOperator::CreateNot(NewAShr);
}
return nullptr;
}