This change refactors the parte parsing logic to operate on StringRefs of the part data rather than starting from an offset and splicing down. It also improves some of the error reporting around part layout. Specifically, this code now reports a distinct error if there isn't enough data in the buffer to store the part size and it reports an error if the parts overlap. Reviewed By: bob80905 Differential Revision: https://reviews.llvm.org/D139681
174 lines
7.0 KiB
C++
174 lines
7.0 KiB
C++
//===- DXContainerTest.cpp - Tests for DXContainerFile --------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Object/DXContainer.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/BinaryFormat/Magic.h"
|
|
#include "llvm/Support/MemoryBufferRef.h"
|
|
#include "llvm/Testing/Support/Error.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
|
|
template <std::size_t X> MemoryBufferRef getMemoryBuffer(uint8_t Data[X]) {
|
|
StringRef Obj(reinterpret_cast<char *>(&Data[0]), X);
|
|
return MemoryBufferRef(Obj, "");
|
|
}
|
|
|
|
TEST(DXCFile, IdentifyMagic) {
|
|
{
|
|
StringRef Buffer("DXBC");
|
|
EXPECT_EQ(identify_magic(Buffer), file_magic::dxcontainer_object);
|
|
}
|
|
{
|
|
StringRef Buffer("DXBCBlahBlahBlah");
|
|
EXPECT_EQ(identify_magic(Buffer), file_magic::dxcontainer_object);
|
|
}
|
|
}
|
|
|
|
TEST(DXCFile, ParseHeaderErrors) {
|
|
uint8_t Buffer[] = {0x44, 0x58, 0x42, 0x43};
|
|
EXPECT_THAT_EXPECTED(
|
|
DXContainer::create(getMemoryBuffer<4>(Buffer)),
|
|
FailedWithMessage("Reading structure out of file bounds"));
|
|
}
|
|
|
|
TEST(DXCFile, EmptyFile) {
|
|
EXPECT_THAT_EXPECTED(
|
|
DXContainer::create(MemoryBufferRef(StringRef("", 0), "")),
|
|
FailedWithMessage("Reading structure out of file bounds"));
|
|
}
|
|
|
|
TEST(DXCFile, ParseHeader) {
|
|
uint8_t Buffer[] = {0x44, 0x58, 0x42, 0x43, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
|
|
0x70, 0x0D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
|
|
DXContainer C =
|
|
llvm::cantFail(DXContainer::create(getMemoryBuffer<32>(Buffer)));
|
|
EXPECT_TRUE(memcmp(C.getHeader().Magic, "DXBC", 4) == 0);
|
|
EXPECT_TRUE(memcmp(C.getHeader().FileHash.Digest,
|
|
"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0", 16) == 0);
|
|
EXPECT_EQ(C.getHeader().Version.Major, 1u);
|
|
EXPECT_EQ(C.getHeader().Version.Minor, 0u);
|
|
}
|
|
|
|
TEST(DXCFile, ParsePartMissingOffsets) {
|
|
uint8_t Buffer[] = {
|
|
0x44, 0x58, 0x42, 0x43, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00,
|
|
0x00, 0x00, 0x70, 0x0D, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
|
|
};
|
|
EXPECT_THAT_EXPECTED(
|
|
DXContainer::create(getMemoryBuffer<32>(Buffer)),
|
|
FailedWithMessage("Reading structure out of file bounds"));
|
|
}
|
|
|
|
TEST(DXCFile, ParsePartInvalidOffsets) {
|
|
// This test covers a case where the part offset is beyond the buffer size.
|
|
uint8_t Buffer[] = {
|
|
0x44, 0x58, 0x42, 0x43, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
|
|
0x70, 0x0D, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
};
|
|
EXPECT_THAT_EXPECTED(
|
|
DXContainer::create(getMemoryBuffer<36>(Buffer)),
|
|
FailedWithMessage("Part offset points beyond boundary of the file"));
|
|
}
|
|
|
|
TEST(DXCFile, ParsePartTooSmallBuffer) {
|
|
// This test covers a case where there is insufficent space to read a full
|
|
// part name, but the offset for the part is inside the buffer.
|
|
uint8_t Buffer[] = {0x44, 0x58, 0x42, 0x43, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
|
|
0x26, 0x0D, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
|
|
0x24, 0x00, 0x00, 0x00, 0x46, 0x4B};
|
|
EXPECT_THAT_EXPECTED(
|
|
DXContainer::create(getMemoryBuffer<38>(Buffer)),
|
|
FailedWithMessage("File not large enough to read part name"));
|
|
}
|
|
|
|
TEST(DXCFile, ParsePartNoSize) {
|
|
// This test covers a case where the part's header is readable, but the size
|
|
// the part extends beyond the boundaries of the file.
|
|
uint8_t Buffer[] = {0x44, 0x58, 0x42, 0x43, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x28, 0x0D, 0x00,
|
|
0x00, 0x01, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00,
|
|
0x46, 0x4B, 0x45, 0x30, 0x00, 0x00};
|
|
EXPECT_THAT_EXPECTED(
|
|
DXContainer::create(getMemoryBuffer<42>(Buffer)),
|
|
FailedWithMessage("Reading part size out of file bounds"));
|
|
}
|
|
|
|
TEST(DXCFile, ParseOverlappingParts) {
|
|
// This test covers a case where a part's offset is inside the size range
|
|
// covered by the previous part.
|
|
uint8_t Buffer[] = {
|
|
0x44, 0x58, 0x42, 0x43, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
|
|
0x40, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x28, 0x00, 0x00, 0x00,
|
|
0x2C, 0x00, 0x00, 0x00, 0x46, 0x4B, 0x45, 0x30, 0x08, 0x00, 0x00, 0x00,
|
|
0x46, 0x4B, 0x45, 0x31, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
};
|
|
EXPECT_THAT_EXPECTED(
|
|
DXContainer::create(getMemoryBuffer<60>(Buffer)),
|
|
FailedWithMessage(
|
|
"Part offset for part 1 begins before the previous part ends"));
|
|
}
|
|
|
|
TEST(DXCFile, ParseEmptyParts) {
|
|
uint8_t Buffer[] = {
|
|
0x44, 0x58, 0x42, 0x43, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
|
|
0x70, 0x0D, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x00,
|
|
0x44, 0x00, 0x00, 0x00, 0x4C, 0x00, 0x00, 0x00, 0x54, 0x00, 0x00, 0x00,
|
|
0x5C, 0x00, 0x00, 0x00, 0x64, 0x00, 0x00, 0x00, 0x6C, 0x00, 0x00, 0x00,
|
|
0x46, 0x4B, 0x45, 0x30, 0x00, 0x00, 0x00, 0x00, 0x46, 0x4B, 0x45, 0x31,
|
|
0x00, 0x00, 0x00, 0x00, 0x46, 0x4B, 0x45, 0x32, 0x00, 0x00, 0x00, 0x00,
|
|
0x46, 0x4B, 0x45, 0x33, 0x00, 0x00, 0x00, 0x00, 0x46, 0x4B, 0x45, 0x34,
|
|
0x00, 0x00, 0x00, 0x00, 0x46, 0x4B, 0x45, 0x35, 0x00, 0x00, 0x00, 0x00,
|
|
0x46, 0x4B, 0x45, 0x36, 0x00, 0x00, 0x00, 0x00,
|
|
};
|
|
DXContainer C =
|
|
llvm::cantFail(DXContainer::create(getMemoryBuffer<116>(Buffer)));
|
|
EXPECT_EQ(C.getHeader().PartCount, 7u);
|
|
|
|
// All the part sizes are 0, which makes a nice test of the range based for
|
|
int ElementsVisited = 0;
|
|
for (auto Part : C) {
|
|
EXPECT_EQ(Part.Part.Size, 0u);
|
|
EXPECT_EQ(Part.Data.size(), 0u);
|
|
++ElementsVisited;
|
|
}
|
|
EXPECT_EQ(ElementsVisited, 7);
|
|
|
|
{
|
|
// These are all intended to be fake part names so that the parser doesn't
|
|
// try to parse the part data.
|
|
auto It = C.begin();
|
|
EXPECT_TRUE(memcmp(It->Part.Name, "FKE0", 4) == 0);
|
|
++It;
|
|
EXPECT_TRUE(memcmp(It->Part.Name, "FKE1", 4) == 0);
|
|
++It;
|
|
EXPECT_TRUE(memcmp(It->Part.Name, "FKE2", 4) == 0);
|
|
++It;
|
|
EXPECT_TRUE(memcmp(It->Part.Name, "FKE3", 4) == 0);
|
|
++It;
|
|
EXPECT_TRUE(memcmp(It->Part.Name, "FKE4", 4) == 0);
|
|
++It;
|
|
EXPECT_TRUE(memcmp(It->Part.Name, "FKE5", 4) == 0);
|
|
++It;
|
|
EXPECT_TRUE(memcmp(It->Part.Name, "FKE6", 4) == 0);
|
|
++It; // Don't increment past the end
|
|
EXPECT_TRUE(memcmp(It->Part.Name, "FKE6", 4) == 0);
|
|
}
|
|
}
|