In `GIMatchTreeOpcodePartitioner::applyForPartition()`, the loop over the possible leaves skip a leaf if the instruction does not care about the instruction. When processing the referenced operands in the next loop the same leaves need to be skipped. Later, when these leaves are added to all partitions, the bit vector must be resized first before the bit representing the leaf is set. This fixes a crash in llvm-tblgen. Reviewed By: arsenm Differential Revision: https://reviews.llvm.org/D134192
787 lines
31 KiB
C++
787 lines
31 KiB
C++
//===- GIMatchTree.cpp - A decision tree to match GIMatchDag's ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "GIMatchTree.h"
|
|
#include "GIMatchDagPredicate.h"
|
|
|
|
#include "../CodeGenInstruction.h"
|
|
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/ScopedPrinter.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/TableGen/Error.h"
|
|
#include "llvm/TableGen/Record.h"
|
|
|
|
#define DEBUG_TYPE "gimatchtree"
|
|
|
|
using namespace llvm;
|
|
|
|
void GIMatchTree::writeDOTGraph(raw_ostream &OS) const {
|
|
OS << "digraph \"matchtree\" {\n";
|
|
writeDOTGraphNode(OS);
|
|
OS << "}\n";
|
|
}
|
|
|
|
void GIMatchTree::writeDOTGraphNode(raw_ostream &OS) const {
|
|
OS << format(" Node%p", this) << " [shape=record,label=\"{";
|
|
if (Partitioner) {
|
|
Partitioner->emitDescription(OS);
|
|
OS << "|" << Partitioner->getNumPartitions() << " partitions|";
|
|
} else
|
|
OS << "No partitioner|";
|
|
bool IsFullyTraversed = true;
|
|
bool IsFullyTested = true;
|
|
StringRef Separator = "";
|
|
for (const auto &Leaf : PossibleLeaves) {
|
|
OS << Separator << Leaf.getName();
|
|
Separator = ",";
|
|
if (!Leaf.isFullyTraversed())
|
|
IsFullyTraversed = false;
|
|
if (!Leaf.isFullyTested())
|
|
IsFullyTested = false;
|
|
}
|
|
if (!Partitioner && !IsFullyTraversed)
|
|
OS << "|Not fully traversed";
|
|
if (!Partitioner && !IsFullyTested) {
|
|
OS << "|Not fully tested";
|
|
if (IsFullyTraversed) {
|
|
for (const GIMatchTreeLeafInfo &Leaf : PossibleLeaves) {
|
|
if (Leaf.isFullyTested())
|
|
continue;
|
|
OS << "\\n" << Leaf.getName() << ": " << &Leaf;
|
|
for (const GIMatchDagPredicate *P : Leaf.untested_predicates())
|
|
OS << *P;
|
|
}
|
|
}
|
|
}
|
|
OS << "}\"";
|
|
if (!Partitioner &&
|
|
(!IsFullyTraversed || !IsFullyTested || PossibleLeaves.size() > 1))
|
|
OS << ",color=red";
|
|
OS << "]\n";
|
|
for (const auto &C : Children)
|
|
C.writeDOTGraphNode(OS);
|
|
writeDOTGraphEdges(OS);
|
|
}
|
|
|
|
void GIMatchTree::writeDOTGraphEdges(raw_ostream &OS) const {
|
|
for (const auto &Child : enumerate(Children)) {
|
|
OS << format(" Node%p", this) << " -> " << format("Node%p", &Child.value())
|
|
<< " [label=\"#" << Child.index() << " ";
|
|
Partitioner->emitPartitionName(OS, Child.index());
|
|
OS << "\"]\n";
|
|
}
|
|
}
|
|
|
|
GIMatchTreeBuilderLeafInfo::GIMatchTreeBuilderLeafInfo(
|
|
GIMatchTreeBuilder &Builder, StringRef Name, unsigned RootIdx,
|
|
const GIMatchDag &MatchDag, void *Data)
|
|
: Builder(Builder), Info(Name, RootIdx, Data), MatchDag(MatchDag),
|
|
RemainingInstrNodes(BitVector(MatchDag.getNumInstrNodes(), true)),
|
|
RemainingEdges(BitVector(MatchDag.getNumEdges(), true)),
|
|
RemainingPredicates(BitVector(MatchDag.getNumPredicates(), true)),
|
|
TraversableEdges(MatchDag.getNumEdges()),
|
|
TestablePredicates(MatchDag.getNumPredicates()) {
|
|
// Number all the predicates in this DAG
|
|
for (auto &P : enumerate(MatchDag.predicates())) {
|
|
PredicateIDs.insert(std::make_pair(P.value(), P.index()));
|
|
}
|
|
|
|
// Number all the predicate dependencies in this DAG and set up a bitvector
|
|
// for each predicate indicating the unsatisfied dependencies.
|
|
for (auto &Dep : enumerate(MatchDag.predicate_edges())) {
|
|
PredicateDepIDs.insert(std::make_pair(Dep.value(), Dep.index()));
|
|
}
|
|
UnsatisfiedPredDepsForPred.resize(MatchDag.getNumPredicates(),
|
|
BitVector(PredicateDepIDs.size()));
|
|
for (auto &Dep : enumerate(MatchDag.predicate_edges())) {
|
|
unsigned ID = PredicateIDs.lookup(Dep.value()->getPredicate());
|
|
UnsatisfiedPredDepsForPred[ID].set(Dep.index());
|
|
}
|
|
}
|
|
|
|
void GIMatchTreeBuilderLeafInfo::declareInstr(const GIMatchDagInstr *Instr, unsigned ID) {
|
|
// Record the assignment of this instr to the given ID.
|
|
auto InfoI = InstrNodeToInfo.insert(std::make_pair(
|
|
Instr, GIMatchTreeInstrInfo(ID, Instr)));
|
|
InstrIDToInfo.insert(std::make_pair(ID, &InfoI.first->second));
|
|
|
|
if (Instr == nullptr)
|
|
return;
|
|
|
|
if (!Instr->getUserAssignedName().empty())
|
|
Info.bindInstrVariable(Instr->getUserAssignedName(), ID);
|
|
for (const auto &VarBinding : Instr->user_assigned_operand_names())
|
|
Info.bindOperandVariable(VarBinding.second, ID, VarBinding.first);
|
|
|
|
// Clear the bit indicating we haven't visited this instr.
|
|
const auto &NodeI = find(MatchDag.instr_nodes(), Instr);
|
|
assert(NodeI != MatchDag.instr_nodes_end() && "Instr isn't in this DAG");
|
|
unsigned InstrIdx = MatchDag.getInstrNodeIdx(NodeI);
|
|
RemainingInstrNodes.reset(InstrIdx);
|
|
|
|
// When we declare an instruction, we don't expose any traversable edges just
|
|
// yet. A partitioner has to check they exist and are registers before they
|
|
// are traversable.
|
|
|
|
// When we declare an instruction, we potentially activate some predicates.
|
|
// Mark the dependencies that are now satisfied as a result of this
|
|
// instruction and mark any predicates whose dependencies are fully
|
|
// satisfied.
|
|
for (auto &Dep : enumerate(MatchDag.predicate_edges())) {
|
|
if (Dep.value()->getRequiredMI() == Instr &&
|
|
Dep.value()->getRequiredMO() == nullptr) {
|
|
for (auto &DepsFor : enumerate(UnsatisfiedPredDepsForPred)) {
|
|
DepsFor.value().reset(Dep.index());
|
|
if (DepsFor.value().none())
|
|
TestablePredicates.set(DepsFor.index());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void GIMatchTreeBuilderLeafInfo::declareOperand(unsigned InstrID,
|
|
unsigned OpIdx) {
|
|
const GIMatchDagInstr *Instr = InstrIDToInfo.lookup(InstrID)->getInstrNode();
|
|
|
|
OperandIDToInfo.insert(std::make_pair(
|
|
std::make_pair(InstrID, OpIdx),
|
|
GIMatchTreeOperandInfo(Instr, OpIdx)));
|
|
|
|
// When an operand becomes reachable, we potentially activate some traversals.
|
|
// Record the edges that can now be followed as a result of this
|
|
// instruction.
|
|
for (auto &E : enumerate(MatchDag.edges())) {
|
|
if (E.value()->getFromMI() == Instr &&
|
|
E.value()->getFromMO()->getIdx() == OpIdx) {
|
|
TraversableEdges.set(E.index());
|
|
}
|
|
}
|
|
|
|
// When an operand becomes reachable, we potentially activate some predicates.
|
|
// Clear the dependencies that are now satisfied as a result of this
|
|
// operand and activate any predicates whose dependencies are fully
|
|
// satisfied.
|
|
for (auto &Dep : enumerate(MatchDag.predicate_edges())) {
|
|
if (Dep.value()->getRequiredMI() == Instr && Dep.value()->getRequiredMO() &&
|
|
Dep.value()->getRequiredMO()->getIdx() == OpIdx) {
|
|
for (auto &DepsFor : enumerate(UnsatisfiedPredDepsForPred)) {
|
|
DepsFor.value().reset(Dep.index());
|
|
if (DepsFor.value().none())
|
|
TestablePredicates.set(DepsFor.index());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void GIMatchTreeBuilder::addPartitionersForInstr(unsigned InstrIdx) {
|
|
// Find the partitioners that can be used now that this node is
|
|
// uncovered. Our choices are:
|
|
// - Test the opcode
|
|
addPartitioner(std::make_unique<GIMatchTreeOpcodePartitioner>(InstrIdx));
|
|
}
|
|
|
|
void GIMatchTreeBuilder::addPartitionersForOperand(unsigned InstrID,
|
|
unsigned OpIdx) {
|
|
LLVM_DEBUG(dbgs() << "Add partitioners for Instrs[" << InstrID
|
|
<< "].getOperand(" << OpIdx << ")\n");
|
|
addPartitioner(
|
|
std::make_unique<GIMatchTreeVRegDefPartitioner>(InstrID, OpIdx));
|
|
}
|
|
|
|
void GIMatchTreeBuilder::filterRedundantPartitioners() {
|
|
// TODO: Filter partitioners for facts that are already known
|
|
// - If we know the opcode, we can elide the num operand check so long as
|
|
// the instruction has a fixed number of operands.
|
|
// - If we know an exact number of operands then we can elide further number
|
|
// of operand checks.
|
|
// - If the current min number of operands exceeds the one we want to check
|
|
// then we can elide it.
|
|
}
|
|
|
|
void GIMatchTreeBuilder::evaluatePartitioners() {
|
|
// Determine the partitioning the partitioner would produce
|
|
for (auto &Partitioner : Partitioners) {
|
|
LLVM_DEBUG(dbgs() << " Weighing up ";
|
|
Partitioner->emitDescription(dbgs()); dbgs() << "\n");
|
|
Partitioner->repartition(Leaves);
|
|
LLVM_DEBUG(Partitioner->emitPartitionResults(dbgs()));
|
|
}
|
|
}
|
|
|
|
void GIMatchTreeBuilder::runStep() {
|
|
LLVM_DEBUG(dbgs() << "Building match tree node for " << TreeNode << "\n");
|
|
LLVM_DEBUG(dbgs() << " Rules reachable at this node:\n");
|
|
for (const auto &Leaf : Leaves) {
|
|
LLVM_DEBUG(dbgs() << " " << Leaf.getName() << " (" << &Leaf.getInfo() << "\n");
|
|
TreeNode->addPossibleLeaf(Leaf.getInfo(), Leaf.isFullyTraversed(),
|
|
Leaf.isFullyTested());
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << " Partitioners available at this node:\n");
|
|
#ifndef NDEBUG
|
|
for (const auto &Partitioner : Partitioners)
|
|
LLVM_DEBUG(dbgs() << " "; Partitioner->emitDescription(dbgs());
|
|
dbgs() << "\n");
|
|
#endif // ifndef NDEBUG
|
|
|
|
// Check for unreachable rules. Rules are unreachable if they are preceeded by
|
|
// a fully tested rule.
|
|
// Note: This is only true for the current algorithm, if we allow the
|
|
// algorithm to compare equally valid rules then they will become
|
|
// reachable.
|
|
{
|
|
auto FullyTestedLeafI = Leaves.end();
|
|
for (auto LeafI = Leaves.begin(), LeafE = Leaves.end();
|
|
LeafI != LeafE; ++LeafI) {
|
|
if (LeafI->isFullyTraversed() && LeafI->isFullyTested())
|
|
FullyTestedLeafI = LeafI;
|
|
else if (FullyTestedLeafI != Leaves.end()) {
|
|
PrintError("Leaf " + LeafI->getName() + " is unreachable");
|
|
PrintNote("Leaf " + FullyTestedLeafI->getName() +
|
|
" will have already matched");
|
|
}
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << " Eliminating redundant partitioners:\n");
|
|
filterRedundantPartitioners();
|
|
LLVM_DEBUG(dbgs() << " Partitioners remaining:\n");
|
|
#ifndef NDEBUG
|
|
for (const auto &Partitioner : Partitioners)
|
|
LLVM_DEBUG(dbgs() << " "; Partitioner->emitDescription(dbgs());
|
|
dbgs() << "\n");
|
|
#endif // ifndef NDEBUG
|
|
|
|
if (Partitioners.empty()) {
|
|
// Nothing left to do but check we really did identify a single rule.
|
|
if (Leaves.size() > 1) {
|
|
LLVM_DEBUG(dbgs() << "Leaf contains multiple rules, drop after the first "
|
|
"fully tested rule\n");
|
|
auto FirstFullyTested =
|
|
llvm::find_if(Leaves, [](const GIMatchTreeBuilderLeafInfo &X) {
|
|
return X.isFullyTraversed() && X.isFullyTested() &&
|
|
!X.getMatchDag().hasPostMatchPredicate();
|
|
});
|
|
if (FirstFullyTested != Leaves.end())
|
|
FirstFullyTested++;
|
|
|
|
#ifndef NDEBUG
|
|
for (auto &Leaf : make_range(Leaves.begin(), FirstFullyTested))
|
|
LLVM_DEBUG(dbgs() << " Kept " << Leaf.getName() << "\n");
|
|
for (const auto &Leaf : make_range(FirstFullyTested, Leaves.end()))
|
|
LLVM_DEBUG(dbgs() << " Dropped " << Leaf.getName() << "\n");
|
|
#endif // ifndef NDEBUG
|
|
TreeNode->dropLeavesAfter(
|
|
std::distance(Leaves.begin(), FirstFullyTested));
|
|
}
|
|
for (const auto &Leaf : Leaves) {
|
|
if (!Leaf.isFullyTraversed()) {
|
|
PrintError("Leaf " + Leaf.getName() + " is not fully traversed");
|
|
PrintNote("This indicates a missing partitioner within tblgen");
|
|
Leaf.dump(errs());
|
|
for (unsigned InstrIdx : Leaf.untested_instrs())
|
|
PrintNote("Instr " + llvm::to_string(*Leaf.getInstr(InstrIdx)));
|
|
for (unsigned EdgeIdx : Leaf.untested_edges())
|
|
PrintNote("Edge " + llvm::to_string(*Leaf.getEdge(EdgeIdx)));
|
|
}
|
|
}
|
|
|
|
// Copy out information about untested predicates so the user of the tree
|
|
// can deal with them.
|
|
for (auto LeafPair : zip(Leaves, TreeNode->possible_leaves())) {
|
|
const GIMatchTreeBuilderLeafInfo &BuilderLeaf = std::get<0>(LeafPair);
|
|
GIMatchTreeLeafInfo &TreeLeaf = std::get<1>(LeafPair);
|
|
if (!BuilderLeaf.isFullyTested())
|
|
for (unsigned PredicateIdx : BuilderLeaf.untested_predicates())
|
|
TreeLeaf.addUntestedPredicate(BuilderLeaf.getPredicate(PredicateIdx));
|
|
}
|
|
return;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << " Weighing up partitioners:\n");
|
|
evaluatePartitioners();
|
|
|
|
// Select the best partitioner by its ability to partition
|
|
// - Prefer partitioners that don't distinguish between partitions. This
|
|
// is to fail early on decisions that must go a single way.
|
|
auto PartitionerI = std::max_element(
|
|
Partitioners.begin(), Partitioners.end(),
|
|
[](const std::unique_ptr<GIMatchTreePartitioner> &A,
|
|
const std::unique_ptr<GIMatchTreePartitioner> &B) {
|
|
// We generally want partitioners that subdivide the
|
|
// ruleset as much as possible since these take fewer
|
|
// checks to converge on a particular rule. However,
|
|
// it's important to note that one leaf can end up in
|
|
// multiple partitions if the check isn't mutually
|
|
// exclusive (e.g. getVRegDef() vs isReg()).
|
|
// We therefore minimize average leaves per partition.
|
|
return (double)A->getNumLeavesWithDupes() / A->getNumPartitions() >
|
|
(double)B->getNumLeavesWithDupes() / B->getNumPartitions();
|
|
});
|
|
|
|
// Select a partitioner and partition the ruleset
|
|
// Note that it's possible for a single rule to end up in multiple
|
|
// partitions. For example, an opcode test on a rule without an opcode
|
|
// predicate will result in it being passed to all partitions.
|
|
std::unique_ptr<GIMatchTreePartitioner> Partitioner = std::move(*PartitionerI);
|
|
Partitioners.erase(PartitionerI);
|
|
LLVM_DEBUG(dbgs() << " Selected partitioner: ";
|
|
Partitioner->emitDescription(dbgs()); dbgs() << "\n");
|
|
|
|
assert(Partitioner->getNumPartitions() > 0 &&
|
|
"Must always partition into at least one partition");
|
|
|
|
TreeNode->setNumChildren(Partitioner->getNumPartitions());
|
|
for (auto &C : enumerate(TreeNode->children())) {
|
|
SubtreeBuilders.emplace_back(&C.value(), NextInstrID);
|
|
Partitioner->applyForPartition(C.index(), *this, SubtreeBuilders.back());
|
|
}
|
|
|
|
TreeNode->setPartitioner(std::move(Partitioner));
|
|
|
|
// Recurse into the subtree builders. Each one must get a copy of the
|
|
// remaining partitioners as each path has to check everything.
|
|
for (auto &SubtreeBuilder : SubtreeBuilders) {
|
|
for (const auto &Partitioner : Partitioners)
|
|
SubtreeBuilder.addPartitioner(Partitioner->clone());
|
|
SubtreeBuilder.runStep();
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<GIMatchTree> GIMatchTreeBuilder::run() {
|
|
unsigned NewInstrID = allocInstrID();
|
|
// Start by recording the root instruction as instr #0 and set up the initial
|
|
// partitioners.
|
|
for (auto &Leaf : Leaves) {
|
|
LLVM_DEBUG(Leaf.getMatchDag().writeDOTGraph(dbgs(), Leaf.getName()));
|
|
GIMatchDagInstr *Root =
|
|
*(Leaf.getMatchDag().roots().begin() + Leaf.getRootIdx());
|
|
Leaf.declareInstr(Root, NewInstrID);
|
|
}
|
|
|
|
addPartitionersForInstr(NewInstrID);
|
|
|
|
std::unique_ptr<GIMatchTree> TreeRoot = std::make_unique<GIMatchTree>();
|
|
TreeNode = TreeRoot.get();
|
|
runStep();
|
|
|
|
return TreeRoot;
|
|
}
|
|
|
|
void GIMatchTreeOpcodePartitioner::emitPartitionName(raw_ostream &OS, unsigned Idx) const {
|
|
if (PartitionToInstr[Idx] == nullptr) {
|
|
OS << "* or nullptr";
|
|
return;
|
|
}
|
|
OS << PartitionToInstr[Idx]->Namespace
|
|
<< "::" << PartitionToInstr[Idx]->TheDef->getName();
|
|
}
|
|
|
|
void GIMatchTreeOpcodePartitioner::repartition(
|
|
GIMatchTreeBuilder::LeafVec &Leaves) {
|
|
Partitions.clear();
|
|
InstrToPartition.clear();
|
|
PartitionToInstr.clear();
|
|
TestedPredicates.clear();
|
|
|
|
for (const auto &Leaf : enumerate(Leaves)) {
|
|
bool AllOpcodes = true;
|
|
GIMatchTreeInstrInfo *InstrInfo = Leaf.value().getInstrInfo(InstrID);
|
|
BitVector TestedPredicatesForLeaf(
|
|
Leaf.value().getMatchDag().getNumPredicates());
|
|
|
|
// If the instruction isn't declared then we don't care about it. Ignore
|
|
// it for now and add it to all partitions later once we know what
|
|
// partitions we have.
|
|
if (!InstrInfo) {
|
|
LLVM_DEBUG(dbgs() << " " << Leaf.value().getName()
|
|
<< " doesn't care about Instr[" << InstrID << "]\n");
|
|
assert(TestedPredicatesForLeaf.size() == Leaf.value().getMatchDag().getNumPredicates());
|
|
TestedPredicates.push_back(TestedPredicatesForLeaf);
|
|
continue;
|
|
}
|
|
|
|
// If the opcode is available to test then any opcode predicates will have
|
|
// been enabled too.
|
|
for (unsigned PIdx : Leaf.value().TestablePredicates.set_bits()) {
|
|
const auto &P = Leaf.value().getPredicate(PIdx);
|
|
SmallVector<const CodeGenInstruction *, 1> OpcodesForThisPredicate;
|
|
if (const auto *OpcodeP = dyn_cast<const GIMatchDagOpcodePredicate>(P)) {
|
|
// We've found _an_ opcode predicate, but we don't know if it's
|
|
// checking this instruction yet.
|
|
bool IsThisPredicate = false;
|
|
for (const auto &PDep : Leaf.value().getMatchDag().predicate_edges()) {
|
|
if (PDep->getRequiredMI() == InstrInfo->getInstrNode() &&
|
|
PDep->getRequiredMO() == nullptr && PDep->getPredicate() == P) {
|
|
IsThisPredicate = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!IsThisPredicate)
|
|
continue;
|
|
|
|
// If we get here twice then we've somehow ended up with two opcode
|
|
// predicates for one instruction in the same DAG. That should be
|
|
// impossible.
|
|
assert(AllOpcodes && "Conflicting opcode predicates");
|
|
const CodeGenInstruction *Expected = OpcodeP->getInstr();
|
|
OpcodesForThisPredicate.push_back(Expected);
|
|
}
|
|
|
|
if (const auto *OpcodeP =
|
|
dyn_cast<const GIMatchDagOneOfOpcodesPredicate>(P)) {
|
|
// We've found _an_ oneof(opcodes) predicate, but we don't know if it's
|
|
// checking this instruction yet.
|
|
bool IsThisPredicate = false;
|
|
for (const auto &PDep : Leaf.value().getMatchDag().predicate_edges()) {
|
|
if (PDep->getRequiredMI() == InstrInfo->getInstrNode() &&
|
|
PDep->getRequiredMO() == nullptr && PDep->getPredicate() == P) {
|
|
IsThisPredicate = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!IsThisPredicate)
|
|
continue;
|
|
|
|
// If we get here twice then we've somehow ended up with two opcode
|
|
// predicates for one instruction in the same DAG. That should be
|
|
// impossible.
|
|
assert(AllOpcodes && "Conflicting opcode predicates");
|
|
append_range(OpcodesForThisPredicate, OpcodeP->getInstrs());
|
|
}
|
|
|
|
for (const CodeGenInstruction *Expected : OpcodesForThisPredicate) {
|
|
// Mark this predicate as one we're testing.
|
|
TestedPredicatesForLeaf.set(PIdx);
|
|
|
|
// Partitions must be numbered 0, 1, .., N but instructions don't meet
|
|
// that requirement. Assign a partition number to each opcode if we
|
|
// lack one ...
|
|
auto Partition = InstrToPartition.find(Expected);
|
|
if (Partition == InstrToPartition.end()) {
|
|
BitVector Contents(Leaves.size());
|
|
Partition = InstrToPartition
|
|
.insert(std::make_pair(Expected, Partitions.size()))
|
|
.first;
|
|
PartitionToInstr.push_back(Expected);
|
|
Partitions.insert(std::make_pair(Partitions.size(), Contents));
|
|
}
|
|
// ... and mark this leaf as being in that partition.
|
|
Partitions.find(Partition->second)->second.set(Leaf.index());
|
|
AllOpcodes = false;
|
|
LLVM_DEBUG(dbgs() << " " << Leaf.value().getName()
|
|
<< " is in partition " << Partition->second << "\n");
|
|
}
|
|
|
|
// TODO: This is where we would handle multiple choices of opcode
|
|
// the end result will be that this leaf ends up in multiple
|
|
// partitions similarly to AllOpcodes.
|
|
}
|
|
|
|
// If we never check the opcode, add it to every partition.
|
|
if (AllOpcodes) {
|
|
// Add a partition for the default case if we don't already have one.
|
|
if (InstrToPartition.insert(std::make_pair(nullptr, 0)).second) {
|
|
PartitionToInstr.push_back(nullptr);
|
|
BitVector Contents(Leaves.size());
|
|
Partitions.insert(std::make_pair(Partitions.size(), Contents));
|
|
}
|
|
LLVM_DEBUG(dbgs() << " " << Leaf.value().getName()
|
|
<< " is in all partitions (opcode not checked)\n");
|
|
for (auto &Partition : Partitions)
|
|
Partition.second.set(Leaf.index());
|
|
}
|
|
|
|
assert(TestedPredicatesForLeaf.size() == Leaf.value().getMatchDag().getNumPredicates());
|
|
TestedPredicates.push_back(TestedPredicatesForLeaf);
|
|
}
|
|
|
|
if (Partitions.size() == 0) {
|
|
// Add a partition for the default case if we don't already have one.
|
|
if (InstrToPartition.insert(std::make_pair(nullptr, 0)).second) {
|
|
PartitionToInstr.push_back(nullptr);
|
|
BitVector Contents(Leaves.size());
|
|
Partitions.insert(std::make_pair(Partitions.size(), Contents));
|
|
}
|
|
}
|
|
|
|
// Add any leaves that don't care about this instruction to all partitions.
|
|
for (const auto &Leaf : enumerate(Leaves)) {
|
|
GIMatchTreeInstrInfo *InstrInfo = Leaf.value().getInstrInfo(InstrID);
|
|
if (!InstrInfo) {
|
|
// Add a partition for the default case if we don't already have one.
|
|
if (InstrToPartition.insert(std::make_pair(nullptr, 0)).second) {
|
|
PartitionToInstr.push_back(nullptr);
|
|
BitVector Contents(Leaves.size());
|
|
Partitions.insert(std::make_pair(Partitions.size(), Contents));
|
|
}
|
|
for (auto &Partition : Partitions)
|
|
Partition.second.set(Leaf.index());
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void GIMatchTreeOpcodePartitioner::applyForPartition(
|
|
unsigned PartitionIdx, GIMatchTreeBuilder &Builder, GIMatchTreeBuilder &SubBuilder) {
|
|
LLVM_DEBUG(dbgs() << " Making partition " << PartitionIdx << "\n");
|
|
const CodeGenInstruction *CGI = PartitionToInstr[PartitionIdx];
|
|
|
|
BitVector PossibleLeaves = getPossibleLeavesForPartition(PartitionIdx);
|
|
// Consume any predicates we handled.
|
|
for (auto &EnumeratedLeaf : enumerate(Builder.getPossibleLeaves())) {
|
|
if (!PossibleLeaves[EnumeratedLeaf.index()])
|
|
continue;
|
|
|
|
auto &Leaf = EnumeratedLeaf.value();
|
|
const auto &TestedPredicatesForLeaf =
|
|
TestedPredicates[EnumeratedLeaf.index()];
|
|
|
|
for (unsigned PredIdx : TestedPredicatesForLeaf.set_bits()) {
|
|
LLVM_DEBUG(dbgs() << " " << Leaf.getName() << " tested predicate #"
|
|
<< PredIdx << " of " << TestedPredicatesForLeaf.size()
|
|
<< " " << *Leaf.getPredicate(PredIdx) << "\n");
|
|
Leaf.RemainingPredicates.reset(PredIdx);
|
|
Leaf.TestablePredicates.reset(PredIdx);
|
|
}
|
|
SubBuilder.addLeaf(Leaf);
|
|
}
|
|
|
|
// Nothing to do, we don't know anything about this instruction as a result
|
|
// of this partitioner.
|
|
if (CGI == nullptr)
|
|
return;
|
|
|
|
GIMatchTreeBuilder::LeafVec &NewLeaves = SubBuilder.getPossibleLeaves();
|
|
// Find all the operands we know to exist and are referenced. This will
|
|
// usually be all the referenced operands but there are some cases where
|
|
// instructions are variadic. Such operands must be handled by partitioners
|
|
// that check the number of operands.
|
|
BitVector ReferencedOperands(1);
|
|
for (auto &Leaf : NewLeaves) {
|
|
GIMatchTreeInstrInfo *InstrInfo = Leaf.getInstrInfo(InstrID);
|
|
// Skip any leaves that don't care about this instruction.
|
|
if (!InstrInfo)
|
|
continue;
|
|
const GIMatchDagInstr *Instr = InstrInfo->getInstrNode();
|
|
for (auto &E : enumerate(Leaf.getMatchDag().edges())) {
|
|
if (E.value()->getFromMI() == Instr &&
|
|
E.value()->getFromMO()->getIdx() < CGI->Operands.size()) {
|
|
ReferencedOperands.resize(E.value()->getFromMO()->getIdx() + 1);
|
|
ReferencedOperands.set(E.value()->getFromMO()->getIdx());
|
|
}
|
|
}
|
|
}
|
|
for (auto &Leaf : NewLeaves) {
|
|
// Skip any leaves that don't care about this instruction.
|
|
if (!Leaf.getInstrInfo(InstrID))
|
|
continue;
|
|
|
|
for (unsigned OpIdx : ReferencedOperands.set_bits()) {
|
|
Leaf.declareOperand(InstrID, OpIdx);
|
|
}
|
|
}
|
|
for (unsigned OpIdx : ReferencedOperands.set_bits()) {
|
|
SubBuilder.addPartitionersForOperand(InstrID, OpIdx);
|
|
}
|
|
}
|
|
|
|
void GIMatchTreeOpcodePartitioner::emitPartitionResults(
|
|
raw_ostream &OS) const {
|
|
OS << "Partitioning by opcode would produce " << Partitions.size()
|
|
<< " partitions\n";
|
|
for (const auto &Partition : InstrToPartition) {
|
|
if (Partition.first == nullptr)
|
|
OS << "Default: ";
|
|
else
|
|
OS << Partition.first->TheDef->getName() << ": ";
|
|
StringRef Separator = "";
|
|
for (unsigned I : Partitions.find(Partition.second)->second.set_bits()) {
|
|
OS << Separator << I;
|
|
Separator = ", ";
|
|
}
|
|
OS << "\n";
|
|
}
|
|
}
|
|
|
|
void GIMatchTreeOpcodePartitioner::generatePartitionSelectorCode(
|
|
raw_ostream &OS, StringRef Indent) const {
|
|
// Make sure not to emit empty switch or switch with just default
|
|
if (PartitionToInstr.size() == 1 && PartitionToInstr[0] == nullptr) {
|
|
OS << Indent << "Partition = 0;\n";
|
|
} else if (PartitionToInstr.size()) {
|
|
OS << Indent << "Partition = -1;\n"
|
|
<< Indent << "switch (MIs[" << InstrID << "]->getOpcode()) {\n";
|
|
for (const auto &EnumInstr : enumerate(PartitionToInstr)) {
|
|
if (EnumInstr.value() == nullptr)
|
|
OS << Indent << "default:";
|
|
else
|
|
OS << Indent << "case " << EnumInstr.value()->Namespace
|
|
<< "::" << EnumInstr.value()->TheDef->getName() << ":";
|
|
OS << " Partition = " << EnumInstr.index() << "; break;\n";
|
|
}
|
|
OS << Indent << "}\n";
|
|
}
|
|
OS << Indent
|
|
<< "// Default case but without conflicting with potential default case "
|
|
"in selection.\n"
|
|
<< Indent << "if (Partition == -1) return false;\n";
|
|
}
|
|
|
|
void GIMatchTreeVRegDefPartitioner::addToPartition(bool Result,
|
|
unsigned LeafIdx) {
|
|
auto I = ResultToPartition.find(Result);
|
|
if (I == ResultToPartition.end()) {
|
|
ResultToPartition.insert(std::make_pair(Result, PartitionToResult.size()));
|
|
PartitionToResult.push_back(Result);
|
|
}
|
|
I = ResultToPartition.find(Result);
|
|
auto P = Partitions.find(I->second);
|
|
if (P == Partitions.end())
|
|
P = Partitions.insert(std::make_pair(I->second, BitVector())).first;
|
|
P->second.resize(LeafIdx + 1);
|
|
P->second.set(LeafIdx);
|
|
}
|
|
|
|
void GIMatchTreeVRegDefPartitioner::repartition(
|
|
GIMatchTreeBuilder::LeafVec &Leaves) {
|
|
Partitions.clear();
|
|
|
|
for (const auto &Leaf : enumerate(Leaves)) {
|
|
GIMatchTreeInstrInfo *InstrInfo = Leaf.value().getInstrInfo(InstrID);
|
|
BitVector TraversedEdgesForLeaf(Leaf.value().getMatchDag().getNumEdges());
|
|
|
|
// If the instruction isn't declared then we don't care about it. Ignore
|
|
// it for now and add it to all partitions later once we know what
|
|
// partitions we have.
|
|
if (!InstrInfo) {
|
|
TraversedEdges.push_back(TraversedEdgesForLeaf);
|
|
continue;
|
|
}
|
|
|
|
// If this node has an use -> def edge from this operand then this
|
|
// instruction must be in partition 1 (isVRegDef()).
|
|
bool WantsEdge = false;
|
|
for (unsigned EIdx : Leaf.value().TraversableEdges.set_bits()) {
|
|
const auto &E = Leaf.value().getEdge(EIdx);
|
|
if (E->getFromMI() != InstrInfo->getInstrNode() ||
|
|
E->getFromMO()->getIdx() != OpIdx || E->isDefToUse())
|
|
continue;
|
|
|
|
// We're looking at the right edge. This leaf wants a vreg def so we'll
|
|
// put it in partition 1.
|
|
addToPartition(true, Leaf.index());
|
|
TraversedEdgesForLeaf.set(EIdx);
|
|
WantsEdge = true;
|
|
}
|
|
|
|
bool isNotReg = false;
|
|
if (!WantsEdge && isNotReg) {
|
|
// If this leaf doesn't have an edge and we _don't_ want a register,
|
|
// then add it to partition 0.
|
|
addToPartition(false, Leaf.index());
|
|
} else if (!WantsEdge) {
|
|
// If this leaf doesn't have an edge and we don't know what we want,
|
|
// then add it to partition 0 and 1.
|
|
addToPartition(false, Leaf.index());
|
|
addToPartition(true, Leaf.index());
|
|
}
|
|
|
|
TraversedEdges.push_back(TraversedEdgesForLeaf);
|
|
}
|
|
|
|
// Add any leaves that don't care about this instruction to all partitions.
|
|
for (const auto &Leaf : enumerate(Leaves)) {
|
|
GIMatchTreeInstrInfo *InstrInfo = Leaf.value().getInstrInfo(InstrID);
|
|
if (!InstrInfo)
|
|
for (auto &Partition : Partitions) {
|
|
Partition.second.resize(Leaf.index() + 1);
|
|
Partition.second.set(Leaf.index());
|
|
}
|
|
}
|
|
}
|
|
|
|
void GIMatchTreeVRegDefPartitioner::applyForPartition(
|
|
unsigned PartitionIdx, GIMatchTreeBuilder &Builder,
|
|
GIMatchTreeBuilder &SubBuilder) {
|
|
BitVector PossibleLeaves = getPossibleLeavesForPartition(PartitionIdx);
|
|
|
|
std::vector<BitVector> TraversedEdgesByNewLeaves;
|
|
// Consume any edges we handled.
|
|
for (auto &EnumeratedLeaf : enumerate(Builder.getPossibleLeaves())) {
|
|
if (!PossibleLeaves[EnumeratedLeaf.index()])
|
|
continue;
|
|
|
|
auto &Leaf = EnumeratedLeaf.value();
|
|
const auto &TraversedEdgesForLeaf = TraversedEdges[EnumeratedLeaf.index()];
|
|
TraversedEdgesByNewLeaves.push_back(TraversedEdgesForLeaf);
|
|
Leaf.RemainingEdges.reset(TraversedEdgesForLeaf);
|
|
Leaf.TraversableEdges.reset(TraversedEdgesForLeaf);
|
|
SubBuilder.addLeaf(Leaf);
|
|
}
|
|
|
|
// Nothing to do. The only thing we know is that it isn't a vreg-def.
|
|
if (PartitionToResult[PartitionIdx] == false)
|
|
return;
|
|
|
|
NewInstrID = SubBuilder.allocInstrID();
|
|
|
|
GIMatchTreeBuilder::LeafVec &NewLeaves = SubBuilder.getPossibleLeaves();
|
|
for (const auto I : zip(NewLeaves, TraversedEdgesByNewLeaves)) {
|
|
auto &Leaf = std::get<0>(I);
|
|
auto &TraversedEdgesForLeaf = std::get<1>(I);
|
|
GIMatchTreeInstrInfo *InstrInfo = Leaf.getInstrInfo(InstrID);
|
|
// Skip any leaves that don't care about this instruction.
|
|
if (!InstrInfo)
|
|
continue;
|
|
for (unsigned EIdx : TraversedEdgesForLeaf.set_bits()) {
|
|
const GIMatchDagEdge *E = Leaf.getEdge(EIdx);
|
|
Leaf.declareInstr(E->getToMI(), NewInstrID);
|
|
}
|
|
}
|
|
SubBuilder.addPartitionersForInstr(NewInstrID);
|
|
}
|
|
|
|
void GIMatchTreeVRegDefPartitioner::emitPartitionResults(
|
|
raw_ostream &OS) const {
|
|
OS << "Partitioning by vreg-def would produce " << Partitions.size()
|
|
<< " partitions\n";
|
|
for (const auto &Partition : Partitions) {
|
|
OS << Partition.first << " (";
|
|
emitPartitionName(OS, Partition.first);
|
|
OS << "): ";
|
|
StringRef Separator = "";
|
|
for (unsigned I : Partition.second.set_bits()) {
|
|
OS << Separator << I;
|
|
Separator = ", ";
|
|
}
|
|
OS << "\n";
|
|
}
|
|
}
|
|
|
|
void GIMatchTreeVRegDefPartitioner::generatePartitionSelectorCode(
|
|
raw_ostream &OS, StringRef Indent) const {
|
|
OS << Indent << "Partition = -1;\n"
|
|
<< Indent << "if (MIs.size() <= " << NewInstrID << ") MIs.resize("
|
|
<< (NewInstrID + 1) << ");\n"
|
|
<< Indent << "MIs[" << NewInstrID << "] = nullptr;\n"
|
|
<< Indent << "if (MIs[" << InstrID << "]->getOperand(" << OpIdx
|
|
<< ").isReg())\n"
|
|
<< Indent << " MIs[" << NewInstrID << "] = MRI.getVRegDef(MIs[" << InstrID
|
|
<< "]->getOperand(" << OpIdx << ").getReg());\n";
|
|
|
|
for (const auto &Pair : ResultToPartition)
|
|
OS << Indent << "if (MIs[" << NewInstrID << "] "
|
|
<< (Pair.first ? "!=" : "==")
|
|
<< " nullptr) Partition = " << Pair.second << ";\n";
|
|
|
|
OS << Indent << "if (Partition == -1) return false;\n";
|
|
}
|