Files
clang-p2996/mlir/lib/Conversion/ComplexToLLVM/ComplexToLLVM.cpp
Jeremy Furtek b56e65d318 [mlir][arith] Initial support for fastmath flag attributes in the Arithmetic dialect (v2)
This diff adds initial (partial) support for "fastmath" attributes for floating
point operations in the arithmetic dialect. The "fastmath" attributes are
implemented using a default-valued bit enum. The defined flags currently mirror
the fastmath flags in the LLVM dialect (and in LLVM itself). Extending the
set of flags (if necessary) is left as a future task.

In this diff:
- Definition of FastMathAttr as a custom attribute in the Arithmetic dialect
  that inherits from the EnumAttr class.
- Definition of ArithFastMathInterface, which is an interface that is
  implemented by operations that have an arith::fastmath attribute.
- Declaration of a default-valued fastmath attribute for unary and (some) binary
  floating point operations in the Arithmetic dialect.
- Conversion code to lower arithmetic fastmath flags to LLVM fastmath flags

NOT in this diff (but planned or currently in progress):
- Documentation of flag meanings
- Addition of FastMathAttr attributes to other dialects that might lower to the
  Arithmetic dialect (e.g. Math and Complex)
- Folding/rewrite implementations that are enabled by fastmath flags
- Specification of fastmath values from Python bindings (pending other in-
  progress diffs)

Reviewed By: mehdi_amini, vzakhari

Differential Revision: https://reviews.llvm.org/D126305
2022-10-26 11:56:16 -07:00

347 lines
12 KiB
C++

//===- ComplexToLLVM.cpp - conversion from Complex to LLVM dialect --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/ComplexToLLVM/ComplexToLLVM.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Pass/Pass.h"
namespace mlir {
#define GEN_PASS_DEF_CONVERTCOMPLEXTOLLVM
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::LLVM;
//===----------------------------------------------------------------------===//
// ComplexStructBuilder implementation.
//===----------------------------------------------------------------------===//
static constexpr unsigned kRealPosInComplexNumberStruct = 0;
static constexpr unsigned kImaginaryPosInComplexNumberStruct = 1;
ComplexStructBuilder ComplexStructBuilder::undef(OpBuilder &builder,
Location loc, Type type) {
Value val = builder.create<LLVM::UndefOp>(loc, type);
return ComplexStructBuilder(val);
}
void ComplexStructBuilder::setReal(OpBuilder &builder, Location loc,
Value real) {
setPtr(builder, loc, kRealPosInComplexNumberStruct, real);
}
Value ComplexStructBuilder::real(OpBuilder &builder, Location loc) {
return extractPtr(builder, loc, kRealPosInComplexNumberStruct);
}
void ComplexStructBuilder::setImaginary(OpBuilder &builder, Location loc,
Value imaginary) {
setPtr(builder, loc, kImaginaryPosInComplexNumberStruct, imaginary);
}
Value ComplexStructBuilder::imaginary(OpBuilder &builder, Location loc) {
return extractPtr(builder, loc, kImaginaryPosInComplexNumberStruct);
}
//===----------------------------------------------------------------------===//
// Conversion patterns.
//===----------------------------------------------------------------------===//
namespace {
struct AbsOpConversion : public ConvertOpToLLVMPattern<complex::AbsOp> {
using ConvertOpToLLVMPattern<complex::AbsOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(complex::AbsOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
ComplexStructBuilder complexStruct(adaptor.getComplex());
Value real = complexStruct.real(rewriter, op.getLoc());
Value imag = complexStruct.imaginary(rewriter, op.getLoc());
auto fmf = LLVM::FastmathFlagsAttr::get(op.getContext(), {});
Value sqNorm = rewriter.create<LLVM::FAddOp>(
loc, rewriter.create<LLVM::FMulOp>(loc, real, real, fmf),
rewriter.create<LLVM::FMulOp>(loc, imag, imag, fmf), fmf);
rewriter.replaceOpWithNewOp<LLVM::SqrtOp>(op, sqNorm);
return success();
}
};
struct ConstantOpLowering : public ConvertOpToLLVMPattern<complex::ConstantOp> {
using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(complex::ConstantOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
return LLVM::detail::oneToOneRewrite(
op, LLVM::ConstantOp::getOperationName(), adaptor.getOperands(),
op->getAttrs(), *getTypeConverter(), rewriter);
}
};
struct CreateOpConversion : public ConvertOpToLLVMPattern<complex::CreateOp> {
using ConvertOpToLLVMPattern<complex::CreateOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(complex::CreateOp complexOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Pack real and imaginary part in a complex number struct.
auto loc = complexOp.getLoc();
auto structType = typeConverter->convertType(complexOp.getType());
auto complexStruct = ComplexStructBuilder::undef(rewriter, loc, structType);
complexStruct.setReal(rewriter, loc, adaptor.getReal());
complexStruct.setImaginary(rewriter, loc, adaptor.getImaginary());
rewriter.replaceOp(complexOp, {complexStruct});
return success();
}
};
struct ReOpConversion : public ConvertOpToLLVMPattern<complex::ReOp> {
using ConvertOpToLLVMPattern<complex::ReOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(complex::ReOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Extract real part from the complex number struct.
ComplexStructBuilder complexStruct(adaptor.getComplex());
Value real = complexStruct.real(rewriter, op.getLoc());
rewriter.replaceOp(op, real);
return success();
}
};
struct ImOpConversion : public ConvertOpToLLVMPattern<complex::ImOp> {
using ConvertOpToLLVMPattern<complex::ImOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(complex::ImOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Extract imaginary part from the complex number struct.
ComplexStructBuilder complexStruct(adaptor.getComplex());
Value imaginary = complexStruct.imaginary(rewriter, op.getLoc());
rewriter.replaceOp(op, imaginary);
return success();
}
};
struct BinaryComplexOperands {
std::complex<Value> lhs;
std::complex<Value> rhs;
};
template <typename OpTy>
BinaryComplexOperands
unpackBinaryComplexOperands(OpTy op, typename OpTy::Adaptor adaptor,
ConversionPatternRewriter &rewriter) {
auto loc = op.getLoc();
// Extract real and imaginary values from operands.
BinaryComplexOperands unpacked;
ComplexStructBuilder lhs(adaptor.getLhs());
unpacked.lhs.real(lhs.real(rewriter, loc));
unpacked.lhs.imag(lhs.imaginary(rewriter, loc));
ComplexStructBuilder rhs(adaptor.getRhs());
unpacked.rhs.real(rhs.real(rewriter, loc));
unpacked.rhs.imag(rhs.imaginary(rewriter, loc));
return unpacked;
}
struct AddOpConversion : public ConvertOpToLLVMPattern<complex::AddOp> {
using ConvertOpToLLVMPattern<complex::AddOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(complex::AddOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
BinaryComplexOperands arg =
unpackBinaryComplexOperands<complex::AddOp>(op, adaptor, rewriter);
// Initialize complex number struct for result.
auto structType = typeConverter->convertType(op.getType());
auto result = ComplexStructBuilder::undef(rewriter, loc, structType);
// Emit IR to add complex numbers.
auto fmf = LLVM::FastmathFlagsAttr::get(op.getContext(), {});
Value real =
rewriter.create<LLVM::FAddOp>(loc, arg.lhs.real(), arg.rhs.real(), fmf);
Value imag =
rewriter.create<LLVM::FAddOp>(loc, arg.lhs.imag(), arg.rhs.imag(), fmf);
result.setReal(rewriter, loc, real);
result.setImaginary(rewriter, loc, imag);
rewriter.replaceOp(op, {result});
return success();
}
};
struct DivOpConversion : public ConvertOpToLLVMPattern<complex::DivOp> {
using ConvertOpToLLVMPattern<complex::DivOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(complex::DivOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
BinaryComplexOperands arg =
unpackBinaryComplexOperands<complex::DivOp>(op, adaptor, rewriter);
// Initialize complex number struct for result.
auto structType = typeConverter->convertType(op.getType());
auto result = ComplexStructBuilder::undef(rewriter, loc, structType);
// Emit IR to add complex numbers.
auto fmf = LLVM::FastmathFlagsAttr::get(op.getContext(), {});
Value rhsRe = arg.rhs.real();
Value rhsIm = arg.rhs.imag();
Value lhsRe = arg.lhs.real();
Value lhsIm = arg.lhs.imag();
Value rhsSqNorm = rewriter.create<LLVM::FAddOp>(
loc, rewriter.create<LLVM::FMulOp>(loc, rhsRe, rhsRe, fmf),
rewriter.create<LLVM::FMulOp>(loc, rhsIm, rhsIm, fmf), fmf);
Value resultReal = rewriter.create<LLVM::FAddOp>(
loc, rewriter.create<LLVM::FMulOp>(loc, lhsRe, rhsRe, fmf),
rewriter.create<LLVM::FMulOp>(loc, lhsIm, rhsIm, fmf), fmf);
Value resultImag = rewriter.create<LLVM::FSubOp>(
loc, rewriter.create<LLVM::FMulOp>(loc, lhsIm, rhsRe, fmf),
rewriter.create<LLVM::FMulOp>(loc, lhsRe, rhsIm, fmf), fmf);
result.setReal(
rewriter, loc,
rewriter.create<LLVM::FDivOp>(loc, resultReal, rhsSqNorm, fmf));
result.setImaginary(
rewriter, loc,
rewriter.create<LLVM::FDivOp>(loc, resultImag, rhsSqNorm, fmf));
rewriter.replaceOp(op, {result});
return success();
}
};
struct MulOpConversion : public ConvertOpToLLVMPattern<complex::MulOp> {
using ConvertOpToLLVMPattern<complex::MulOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(complex::MulOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
BinaryComplexOperands arg =
unpackBinaryComplexOperands<complex::MulOp>(op, adaptor, rewriter);
// Initialize complex number struct for result.
auto structType = typeConverter->convertType(op.getType());
auto result = ComplexStructBuilder::undef(rewriter, loc, structType);
// Emit IR to add complex numbers.
auto fmf = LLVM::FastmathFlagsAttr::get(op.getContext(), {});
Value rhsRe = arg.rhs.real();
Value rhsIm = arg.rhs.imag();
Value lhsRe = arg.lhs.real();
Value lhsIm = arg.lhs.imag();
Value real = rewriter.create<LLVM::FSubOp>(
loc, rewriter.create<LLVM::FMulOp>(loc, rhsRe, lhsRe, fmf),
rewriter.create<LLVM::FMulOp>(loc, rhsIm, lhsIm, fmf), fmf);
Value imag = rewriter.create<LLVM::FAddOp>(
loc, rewriter.create<LLVM::FMulOp>(loc, lhsIm, rhsRe, fmf),
rewriter.create<LLVM::FMulOp>(loc, lhsRe, rhsIm, fmf), fmf);
result.setReal(rewriter, loc, real);
result.setImaginary(rewriter, loc, imag);
rewriter.replaceOp(op, {result});
return success();
}
};
struct SubOpConversion : public ConvertOpToLLVMPattern<complex::SubOp> {
using ConvertOpToLLVMPattern<complex::SubOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(complex::SubOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
BinaryComplexOperands arg =
unpackBinaryComplexOperands<complex::SubOp>(op, adaptor, rewriter);
// Initialize complex number struct for result.
auto structType = typeConverter->convertType(op.getType());
auto result = ComplexStructBuilder::undef(rewriter, loc, structType);
// Emit IR to substract complex numbers.
auto fmf = LLVM::FastmathFlagsAttr::get(op.getContext(), {});
Value real =
rewriter.create<LLVM::FSubOp>(loc, arg.lhs.real(), arg.rhs.real(), fmf);
Value imag =
rewriter.create<LLVM::FSubOp>(loc, arg.lhs.imag(), arg.rhs.imag(), fmf);
result.setReal(rewriter, loc, real);
result.setImaginary(rewriter, loc, imag);
rewriter.replaceOp(op, {result});
return success();
}
};
} // namespace
void mlir::populateComplexToLLVMConversionPatterns(
LLVMTypeConverter &converter, RewritePatternSet &patterns) {
// clang-format off
patterns.add<
AbsOpConversion,
AddOpConversion,
ConstantOpLowering,
CreateOpConversion,
DivOpConversion,
ImOpConversion,
MulOpConversion,
ReOpConversion,
SubOpConversion
>(converter);
// clang-format on
}
namespace {
struct ConvertComplexToLLVMPass
: public impl::ConvertComplexToLLVMBase<ConvertComplexToLLVMPass> {
void runOnOperation() override;
};
} // namespace
void ConvertComplexToLLVMPass::runOnOperation() {
// Convert to the LLVM IR dialect using the converter defined above.
RewritePatternSet patterns(&getContext());
LLVMTypeConverter converter(&getContext());
populateComplexToLLVMConversionPatterns(converter, patterns);
LLVMConversionTarget target(getContext());
target.addIllegalDialect<complex::ComplexDialect>();
if (failed(
applyPartialConversion(getOperation(), target, std::move(patterns))))
signalPassFailure();
}
std::unique_ptr<Pass> mlir::createConvertComplexToLLVMPass() {
return std::make_unique<ConvertComplexToLLVMPass>();
}