Files
clang-p2996/mlir/lib/Dialect/Async/Transforms/AsyncRuntimeRefCounting.cpp
Michele Scuttari 67d0d7ac0a [MLIR] Update pass declarations to new autogenerated files
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.

Reviewed By: mehdi_amini, rriddle

Differential Review: https://reviews.llvm.org/D132838
2022-08-31 12:28:45 +02:00

566 lines
21 KiB
C++

//===- AsyncRuntimeRefCounting.cpp - Async Runtime Ref Counting -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements automatic reference counting for Async runtime
// operations and types.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Async/Passes.h"
#include "mlir/Analysis/Liveness.h"
#include "mlir/Dialect/Async/IR/Async.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/SmallSet.h"
namespace mlir {
#define GEN_PASS_DEF_ASYNCRUNTIMEREFCOUNTING
#define GEN_PASS_DEF_ASYNCRUNTIMEPOLICYBASEDREFCOUNTING
#include "mlir/Dialect/Async/Passes.h.inc"
} // namespace mlir
#define DEBUG_TYPE "async-runtime-ref-counting"
using namespace mlir;
using namespace mlir::async;
//===----------------------------------------------------------------------===//
// Utility functions shared by reference counting passes.
//===----------------------------------------------------------------------===//
// Drop the reference count immediately if the value has no uses.
static LogicalResult dropRefIfNoUses(Value value, unsigned count = 1) {
if (!value.getUses().empty())
return failure();
OpBuilder b(value.getContext());
// Set insertion point after the operation producing a value, or at the
// beginning of the block if the value defined by the block argument.
if (Operation *op = value.getDefiningOp())
b.setInsertionPointAfter(op);
else
b.setInsertionPointToStart(value.getParentBlock());
b.create<RuntimeDropRefOp>(value.getLoc(), value, b.getI64IntegerAttr(1));
return success();
}
// Calls `addRefCounting` for every reference counted value defined by the
// operation `op` (block arguments and values defined in nested regions).
static LogicalResult walkReferenceCountedValues(
Operation *op, llvm::function_ref<LogicalResult(Value)> addRefCounting) {
// Check that we do not have high level async operations in the IR because
// otherwise reference counting will produce incorrect results after high
// level async operations will be lowered to `async.runtime`
WalkResult checkNoAsyncWalk = op->walk([&](Operation *op) -> WalkResult {
if (!isa<ExecuteOp, AwaitOp, AwaitAllOp, YieldOp>(op))
return WalkResult::advance();
return op->emitError()
<< "async operations must be lowered to async runtime operations";
});
if (checkNoAsyncWalk.wasInterrupted())
return failure();
// Add reference counting to block arguments.
WalkResult blockWalk = op->walk([&](Block *block) -> WalkResult {
for (BlockArgument arg : block->getArguments())
if (isRefCounted(arg.getType()))
if (failed(addRefCounting(arg)))
return WalkResult::interrupt();
return WalkResult::advance();
});
if (blockWalk.wasInterrupted())
return failure();
// Add reference counting to operation results.
WalkResult opWalk = op->walk([&](Operation *op) -> WalkResult {
for (unsigned i = 0; i < op->getNumResults(); ++i)
if (isRefCounted(op->getResultTypes()[i]))
if (failed(addRefCounting(op->getResult(i))))
return WalkResult::interrupt();
return WalkResult::advance();
});
if (opWalk.wasInterrupted())
return failure();
return success();
}
//===----------------------------------------------------------------------===//
// Automatic reference counting based on the liveness analysis.
//===----------------------------------------------------------------------===//
namespace {
class AsyncRuntimeRefCountingPass
: public impl::AsyncRuntimeRefCountingBase<AsyncRuntimeRefCountingPass> {
public:
AsyncRuntimeRefCountingPass() = default;
void runOnOperation() override;
private:
/// Adds an automatic reference counting to the `value`.
///
/// All values (token, group or value) are semantically created with a
/// reference count of +1 and it is the responsibility of the async value user
/// to place the `add_ref` and `drop_ref` operations to ensure that the value
/// is destroyed after the last use.
///
/// The function returns failure if it can't deduce the locations where
/// to place the reference counting operations.
///
/// Async values "semantically created" when:
/// 1. Operation returns async result (e.g. `async.runtime.create`)
/// 2. Async value passed in as a block argument (or function argument,
/// because function arguments are just entry block arguments)
///
/// Passing async value as a function argument (or block argument) does not
/// really mean that a new async value is created, it only means that the
/// caller of a function transfered ownership of `+1` reference to the callee.
/// It is convenient to think that from the callee perspective async value was
/// "created" with `+1` reference by the block argument.
///
/// Automatic reference counting algorithm outline:
///
/// #1 Insert `drop_ref` operations after last use of the `value`.
/// #2 Insert `add_ref` operations before functions calls with reference
/// counted `value` operand (newly created `+1` reference will be
/// transferred to the callee).
/// #3 Verify that divergent control flow does not lead to leaked reference
/// counted objects.
///
/// Async runtime reference counting optimization pass will optimize away
/// some of the redundant `add_ref` and `drop_ref` operations inserted by this
/// strategy (see `async-runtime-ref-counting-opt`).
LogicalResult addAutomaticRefCounting(Value value);
/// (#1) Adds the `drop_ref` operation after the last use of the `value`
/// relying on the liveness analysis.
///
/// If the `value` is in the block `liveIn` set and it is not in the block
/// `liveOut` set, it means that it "dies" in the block. We find the last
/// use of the value in such block and:
///
/// 1. If the last user is a `ReturnLike` operation we do nothing, because
/// it forwards the ownership to the caller.
/// 2. Otherwise we add a `drop_ref` operation immediately after the last
/// use.
LogicalResult addDropRefAfterLastUse(Value value);
/// (#2) Adds the `add_ref` operation before the function call taking `value`
/// operand to ensure that the value passed to the function entry block
/// has a `+1` reference count.
LogicalResult addAddRefBeforeFunctionCall(Value value);
/// (#3) Adds the `drop_ref` operation to account for successor blocks with
/// divergent `liveIn` property: `value` is not in the `liveIn` set of all
/// successor blocks.
///
/// Example:
///
/// ^entry:
/// %token = async.runtime.create : !async.token
/// cf.cond_br %cond, ^bb1, ^bb2
/// ^bb1:
/// async.runtime.await %token
/// async.runtime.drop_ref %token
/// cf.br ^bb2
/// ^bb2:
/// return
///
/// In this example ^bb2 does not have `value` in the `liveIn` set, so we have
/// to branch into a special "reference counting block" from the ^entry that
/// will have a `drop_ref` operation, and then branch into the ^bb2.
///
/// After transformation:
///
/// ^entry:
/// %token = async.runtime.create : !async.token
/// cf.cond_br %cond, ^bb1, ^reference_counting
/// ^bb1:
/// async.runtime.await %token
/// async.runtime.drop_ref %token
/// cf.br ^bb2
/// ^reference_counting:
/// async.runtime.drop_ref %token
/// cf.br ^bb2
/// ^bb2:
/// return
///
/// An exception to this rule are blocks with `async.coro.suspend` terminator,
/// because in Async to LLVM lowering it is guaranteed that the control flow
/// will jump into the resume block, and then follow into the cleanup and
/// suspend blocks.
///
/// Example:
///
/// ^entry(%value: !async.value<f32>):
/// async.runtime.await_and_resume %value, %hdl : !async.value<f32>
/// async.coro.suspend %ret, ^suspend, ^resume, ^cleanup
/// ^resume:
/// %0 = async.runtime.load %value
/// cf.br ^cleanup
/// ^cleanup:
/// ...
/// ^suspend:
/// ...
///
/// Although cleanup and suspend blocks do not have the `value` in the
/// `liveIn` set, it is guaranteed that execution will eventually continue in
/// the resume block (we never explicitly destroy coroutines).
LogicalResult addDropRefInDivergentLivenessSuccessor(Value value);
};
} // namespace
LogicalResult AsyncRuntimeRefCountingPass::addDropRefAfterLastUse(Value value) {
OpBuilder builder(value.getContext());
Location loc = value.getLoc();
// Use liveness analysis to find the placement of `drop_ref`operation.
auto &liveness = getAnalysis<Liveness>();
// We analyse only the blocks of the region that defines the `value`, and do
// not check nested blocks attached to operations.
//
// By analyzing only the `definingRegion` CFG we potentially loose an
// opportunity to drop the reference count earlier and can extend the lifetime
// of reference counted value longer then it is really required.
//
// We also assume that all nested regions finish their execution before the
// completion of the owner operation. The only exception to this rule is
// `async.execute` operation, and we verify that they are lowered to the
// `async.runtime` operations before adding automatic reference counting.
Region *definingRegion = value.getParentRegion();
// Last users of the `value` inside all blocks where the value dies.
llvm::SmallSet<Operation *, 4> lastUsers;
// Find blocks in the `definingRegion` that have users of the `value` (if
// there are multiple users in the block, which one will be selected is
// undefined). User operation might be not the actual user of the value, but
// the operation in the block that has a "real user" in one of the attached
// regions.
llvm::DenseMap<Block *, Operation *> usersInTheBlocks;
for (Operation *user : value.getUsers()) {
Block *userBlock = user->getBlock();
Block *ancestor = definingRegion->findAncestorBlockInRegion(*userBlock);
usersInTheBlocks[ancestor] = ancestor->findAncestorOpInBlock(*user);
assert(ancestor && "ancestor block must be not null");
assert(usersInTheBlocks[ancestor] && "ancestor op must be not null");
}
// Find blocks where the `value` dies: the value is in `liveIn` set and not
// in the `liveOut` set. We place `drop_ref` immediately after the last use
// of the `value` in such regions (after handling few special cases).
//
// We do not traverse all the blocks in the `definingRegion`, because the
// `value` can be in the live in set only if it has users in the block, or it
// is defined in the block.
//
// Values with zero users (only definition) handled explicitly above.
for (auto &blockAndUser : usersInTheBlocks) {
Block *block = blockAndUser.getFirst();
Operation *userInTheBlock = blockAndUser.getSecond();
const LivenessBlockInfo *blockLiveness = liveness.getLiveness(block);
// Value must be in the live input set or defined in the block.
assert(blockLiveness->isLiveIn(value) ||
blockLiveness->getBlock() == value.getParentBlock());
// If value is in the live out set, it means it doesn't "die" in the block.
if (blockLiveness->isLiveOut(value))
continue;
// At this point we proved that `value` dies in the `block`. Find the last
// use of the `value` inside the `block`, this is where it "dies".
Operation *lastUser = blockLiveness->getEndOperation(value, userInTheBlock);
assert(lastUsers.count(lastUser) == 0 && "last users must be unique");
lastUsers.insert(lastUser);
}
// Process all the last users of the `value` inside each block where the value
// dies.
for (Operation *lastUser : lastUsers) {
// Return like operations forward reference count.
if (lastUser->hasTrait<OpTrait::ReturnLike>())
continue;
// We can't currently handle other types of terminators.
if (lastUser->hasTrait<OpTrait::IsTerminator>())
return lastUser->emitError() << "async reference counting can't handle "
"terminators that are not ReturnLike";
// Add a drop_ref immediately after the last user.
builder.setInsertionPointAfter(lastUser);
builder.create<RuntimeDropRefOp>(loc, value, builder.getI64IntegerAttr(1));
}
return success();
}
LogicalResult
AsyncRuntimeRefCountingPass::addAddRefBeforeFunctionCall(Value value) {
OpBuilder builder(value.getContext());
Location loc = value.getLoc();
for (Operation *user : value.getUsers()) {
if (!isa<func::CallOp>(user))
continue;
// Add a reference before the function call to pass the value at `+1`
// reference to the function entry block.
builder.setInsertionPoint(user);
builder.create<RuntimeAddRefOp>(loc, value, builder.getI64IntegerAttr(1));
}
return success();
}
LogicalResult
AsyncRuntimeRefCountingPass::addDropRefInDivergentLivenessSuccessor(
Value value) {
using BlockSet = llvm::SmallPtrSet<Block *, 4>;
OpBuilder builder(value.getContext());
// If a block has successors with different `liveIn` property of the `value`,
// record block successors that do not thave the `value` in the `liveIn` set.
llvm::SmallDenseMap<Block *, BlockSet> divergentLivenessBlocks;
// Use liveness analysis to find the placement of `drop_ref`operation.
auto &liveness = getAnalysis<Liveness>();
// Because we only add `drop_ref` operations to the region that defines the
// `value` we can only process CFG for the same region.
Region *definingRegion = value.getParentRegion();
// Collect blocks with successors with mismatching `liveIn` sets.
for (Block &block : definingRegion->getBlocks()) {
const LivenessBlockInfo *blockLiveness = liveness.getLiveness(&block);
// Skip the block if value is not in the `liveOut` set.
if (!blockLiveness || !blockLiveness->isLiveOut(value))
continue;
BlockSet liveInSuccessors; // `value` is in `liveIn` set
BlockSet noLiveInSuccessors; // `value` is not in the `liveIn` set
// Collect successors that do not have `value` in the `liveIn` set.
for (Block *successor : block.getSuccessors()) {
const LivenessBlockInfo *succLiveness = liveness.getLiveness(successor);
if (succLiveness && succLiveness->isLiveIn(value))
liveInSuccessors.insert(successor);
else
noLiveInSuccessors.insert(successor);
}
// Block has successors with different `liveIn` property of the `value`.
if (!liveInSuccessors.empty() && !noLiveInSuccessors.empty())
divergentLivenessBlocks.try_emplace(&block, noLiveInSuccessors);
}
// Try to insert `dropRef` operations to handle blocks with divergent liveness
// in successors blocks.
for (auto kv : divergentLivenessBlocks) {
Block *block = kv.getFirst();
BlockSet &successors = kv.getSecond();
// Coroutine suspension is a special case terminator for wich we do not
// need to create additional reference counting (see details above).
Operation *terminator = block->getTerminator();
if (isa<CoroSuspendOp>(terminator))
continue;
// We only support successor blocks with empty block argument list.
auto hasArgs = [](Block *block) { return !block->getArguments().empty(); };
if (llvm::any_of(successors, hasArgs))
return terminator->emitOpError()
<< "successor have different `liveIn` property of the reference "
"counted value";
// Make sure that `dropRef` operation is called when branched into the
// successor block without `value` in the `liveIn` set.
for (Block *successor : successors) {
// If successor has a unique predecessor, it is safe to create `dropRef`
// operations directly in the successor block.
//
// Otherwise we need to create a special block for reference counting
// operations, and branch from it to the original successor block.
Block *refCountingBlock = nullptr;
if (successor->getUniquePredecessor() == block) {
refCountingBlock = successor;
} else {
refCountingBlock = &successor->getParent()->emplaceBlock();
refCountingBlock->moveBefore(successor);
OpBuilder builder = OpBuilder::atBlockEnd(refCountingBlock);
builder.create<cf::BranchOp>(value.getLoc(), successor);
}
OpBuilder builder = OpBuilder::atBlockBegin(refCountingBlock);
builder.create<RuntimeDropRefOp>(value.getLoc(), value,
builder.getI64IntegerAttr(1));
// No need to update the terminator operation.
if (successor == refCountingBlock)
continue;
// Update terminator `successor` block to `refCountingBlock`.
for (const auto &pair : llvm::enumerate(terminator->getSuccessors()))
if (pair.value() == successor)
terminator->setSuccessor(refCountingBlock, pair.index());
}
}
return success();
}
LogicalResult
AsyncRuntimeRefCountingPass::addAutomaticRefCounting(Value value) {
// Short-circuit reference counting for values without uses.
if (succeeded(dropRefIfNoUses(value)))
return success();
// Add `drop_ref` operations based on the liveness analysis.
if (failed(addDropRefAfterLastUse(value)))
return failure();
// Add `add_ref` operations before function calls.
if (failed(addAddRefBeforeFunctionCall(value)))
return failure();
// Add `drop_ref` operations to successors with divergent `value` liveness.
if (failed(addDropRefInDivergentLivenessSuccessor(value)))
return failure();
return success();
}
void AsyncRuntimeRefCountingPass::runOnOperation() {
auto functor = [&](Value value) { return addAutomaticRefCounting(value); };
if (failed(walkReferenceCountedValues(getOperation(), functor)))
signalPassFailure();
}
//===----------------------------------------------------------------------===//
// Reference counting based on the user defined policy.
//===----------------------------------------------------------------------===//
namespace {
class AsyncRuntimePolicyBasedRefCountingPass
: public impl::AsyncRuntimePolicyBasedRefCountingBase<
AsyncRuntimePolicyBasedRefCountingPass> {
public:
AsyncRuntimePolicyBasedRefCountingPass() { initializeDefaultPolicy(); }
void runOnOperation() override;
private:
// Adds a reference counting operations for all uses of the `value` according
// to the reference counting policy.
LogicalResult addRefCounting(Value value);
void initializeDefaultPolicy();
llvm::SmallVector<std::function<FailureOr<int>(OpOperand &)>> policy;
};
} // namespace
LogicalResult
AsyncRuntimePolicyBasedRefCountingPass::addRefCounting(Value value) {
// Short-circuit reference counting for values without uses.
if (succeeded(dropRefIfNoUses(value)))
return success();
OpBuilder b(value.getContext());
// Consult the user defined policy for every value use.
for (OpOperand &operand : value.getUses()) {
Location loc = operand.getOwner()->getLoc();
for (auto &func : policy) {
FailureOr<int> refCount = func(operand);
if (failed(refCount))
return failure();
int cnt = *refCount;
// Create `add_ref` operation before the operand owner.
if (cnt > 0) {
b.setInsertionPoint(operand.getOwner());
b.create<RuntimeAddRefOp>(loc, value, b.getI64IntegerAttr(cnt));
}
// Create `drop_ref` operation after the operand owner.
if (cnt < 0) {
b.setInsertionPointAfter(operand.getOwner());
b.create<RuntimeDropRefOp>(loc, value, b.getI64IntegerAttr(-cnt));
}
}
}
return success();
}
void AsyncRuntimePolicyBasedRefCountingPass::initializeDefaultPolicy() {
policy.push_back([](OpOperand &operand) -> FailureOr<int> {
Operation *op = operand.getOwner();
Type type = operand.get().getType();
bool isToken = type.isa<TokenType>();
bool isGroup = type.isa<GroupType>();
bool isValue = type.isa<ValueType>();
// Drop reference after async token or group error check (coro await).
if (auto await = dyn_cast<RuntimeIsErrorOp>(op))
return (isToken || isGroup) ? -1 : 0;
// Drop reference after async value load.
if (auto load = dyn_cast<RuntimeLoadOp>(op))
return isValue ? -1 : 0;
// Drop reference after async token added to the group.
if (auto add = dyn_cast<RuntimeAddToGroupOp>(op))
return isToken ? -1 : 0;
return 0;
});
}
void AsyncRuntimePolicyBasedRefCountingPass::runOnOperation() {
auto functor = [&](Value value) { return addRefCounting(value); };
if (failed(walkReferenceCountedValues(getOperation(), functor)))
signalPassFailure();
}
//----------------------------------------------------------------------------//
std::unique_ptr<Pass> mlir::createAsyncRuntimeRefCountingPass() {
return std::make_unique<AsyncRuntimeRefCountingPass>();
}
std::unique_ptr<Pass> mlir::createAsyncRuntimePolicyBasedRefCountingPass() {
return std::make_unique<AsyncRuntimePolicyBasedRefCountingPass>();
}