Files
clang-p2996/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp
Mahesh Ravishankar 2d4b998697 [mlir][Linalg] Avoid unnecessary propagating producer result to fused op result.
Elementwise op fusion conserves the result of the producer in the
fused op, relying on later clean up patterns to drop unused results of
the fused op. Instead, if the producer result has no other use apart
from the consumer op, avoid making the producer result available in
the fused node. This saves some unnecessary IR manipulations.

Differential Revision: https://reviews.llvm.org/D138096
2022-11-22 07:08:17 +00:00

761 lines
30 KiB
C++

//===- LinalgInterfaces.cpp - Linalg interfaces implementation ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/IR/LinalgInterfaces.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/TypeUtilities.h"
#include "llvm/ADT/SmallBitVector.h"
using namespace mlir;
using namespace mlir::linalg;
/// Include the definitions of the copy operation interface.
#include "mlir/Dialect/Linalg/IR/LinalgInterfaces.cpp.inc"
//===----------------------------------------------------------------------===//
// Interface utility functions
//===----------------------------------------------------------------------===//
bool linalg::detail::canOpOperandsBeDroppedImpl(
linalg::LinalgOp linalgOp, ArrayRef<OpOperand *> droppedOperands) {
SmallVector<AffineMap> indexingMaps;
for (auto &opOperand : linalgOp->getOpOperands()) {
if (llvm::is_contained(droppedOperands, &opOperand))
continue;
indexingMaps.push_back(linalgOp.getMatchingIndexingMap(&opOperand));
}
if (indexingMaps.empty()) {
// If there are no indexing maps, the operand can only be dropped
// if the op has no loops.
return linalgOp.getNumLoops() == 0;
}
return inversePermutation(concatAffineMaps(indexingMaps)) != AffineMap();
}
//===----------------------------------------------------------------------===//
// ContractionOpInterface implementation
//===----------------------------------------------------------------------===//
/// Return true if the use-def chain from `v` to `from` consists of 0 or more
/// unary single-operand operations.
// TODO: relax to multi-operands with constants, which are technically unary ops
// as needed (e.g. add5).
static bool isChainOfUnaryOpsFrom(Value v, Value from) {
while (true) {
if (v == from)
return true;
Operation *op = v.getDefiningOp();
if (!op || op->getNumOperands() != 1)
return false;
v = op->getOperand(0);
};
}
/// Return the unique instance of OpType in `block` if it is indeed unique.
/// Return null if none or more than 1 instances exist.
template <typename OpType>
static OpType getSingleOpOfType(Block &block) {
OpType res = nullptr;
block.walk([&](OpType op) {
if (res) {
res = nullptr;
return WalkResult::interrupt();
}
res = op;
return WalkResult::advance();
});
return res;
}
/// Detect whether res is any permutation of `u5(u1(c) + u2(u3(a) * u4(b)))`
/// on the field (AddOpType, MulOpType), where u1, u2, u3, u4 and u5 represent
/// unary operations that may change the type.
template <typename AddOpType, typename MulOpType>
static bool isAddMul(Block &block) {
if (block.getNumArguments() != 3)
return false;
Operation *yieldOp = block.getTerminator();
if (yieldOp->getNumOperands() != 1)
return false;
AddOpType addOp = getSingleOpOfType<AddOpType>(block);
MulOpType mulOp = getSingleOpOfType<MulOpType>(block);
if (!addOp || !mulOp)
return false;
Value argA = block.getArgument(0), argB = block.getArgument(1);
Value a = mulOp->getOperand(0), b = mulOp->getOperand(1);
Value mul = mulOp->getResult(0);
Value argC = block.getArgument(2);
Value c1 = addOp->getOperand(0), c2 = addOp->getOperand(1);
Value add = addOp->getResult(0);
Value res = yieldOp->getOperand(0);
// Result traces back to add.
auto un = isChainOfUnaryOpsFrom;
bool success = un(res, add);
// One of the operands of add traces back to argC, the other to the mul.
success |= (un(c1, argC) && un(c2, mul)) || ((un(c1, mul)) && un(c2, argC));
// One of the operands of mul traces back to argA, the other to argB.
success |= (un(a, argA) && un(b, argB)) || ((un(a, argB)) && un(b, argA));
return success;
}
enum class MatchContractionResult {
Success = 0,
NotLinalgOp,
WrongNumOperands,
NoReduction,
NotProjectedPermutations,
NotAddMul
};
static MatchContractionResult isContractionInterfaceImpl(Operation *op) {
auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
if (!linalgOp)
return MatchContractionResult::NotLinalgOp;
if (linalgOp.getNumDpsInputs() != 2 || linalgOp.getNumDpsInits() != 1)
return MatchContractionResult::WrongNumOperands;
auto mapRange = linalgOp.getIndexingMapsArray();
if (linalgOp.getNumReductionLoops() == 0)
return MatchContractionResult::NoReduction;
if (llvm::any_of(mapRange,
[](AffineMap m) { return !m.isProjectedPermutation(); }))
return MatchContractionResult::NotProjectedPermutations;
// TODO: more fields than add/mul.
if (!isAddMul<arith::AddFOp, arith::MulFOp>(linalgOp->getRegion(0).front()) &&
!isAddMul<arith::AddIOp, arith::MulIOp>(linalgOp->getRegion(0).front()) &&
!isAddMul<complex::AddOp, complex::MulOp>(
linalgOp->getRegion(0).front()) &&
!isAddMul<arith::OrIOp, arith::AndIOp>(linalgOp->getRegion(0).front()))
return MatchContractionResult::NotAddMul;
return MatchContractionResult::Success;
}
bool mlir::linalg::isaContractionOpInterface(LinalgOp linalgOp) {
if (!linalgOp)
return false;
Operation *op = linalgOp.getOperation();
return isa<ContractionOpInterface>(op) ||
(isContractionInterfaceImpl(op) == MatchContractionResult::Success);
}
/// Verify that a LinalgOp `op` is a contraction.
/// A Linalg contraction is defined in general terms:
/// 1. Has 2 input and 1 output shapes.
/// 2. Has at least one reduction dimension.
/// 3. Has only projected permutation indexing maps.
/// 4. its body computes `u5(u1(c) + u2(u3(a) * u4(b)))` on some field
/// (AddOpType, MulOpType), where u1, u2, u3, u4 and u5 represent scalar unary
/// operations that may change the type (e.g. for mixed-precision).
/// As a consequence, when vectorization of such an op occurs, the only special
/// behavior is that the (unique) MulOpType is vectorized into a
/// `vector.contract`. All other ops are handled in a generic fashion.
/// In the future, we may wish to allow more input arguments and elementwise and
/// constant operations that do not involve the reduction dimension(s).
LogicalResult mlir::linalg::detail::verifyContractionInterface(Operation *op) {
auto res = isContractionInterfaceImpl(op);
if (res == MatchContractionResult::NotLinalgOp)
return op->emitError("expected a LinalgOp");
if (res == MatchContractionResult::WrongNumOperands)
return op->emitError("expected op with 2 inputs and 1 outputs");
if (res == MatchContractionResult::NoReduction)
return op->emitError("expected at least a reduction loop");
if (res == MatchContractionResult::NotProjectedPermutations)
return op->emitError("expected all indexings to be projected permutations");
if (res == MatchContractionResult::NotAddMul)
return op->emitError("(add, mul) operations not found");
return success();
}
//===----------------------------------------------------------------------===//
// ConvolutionOpInterface implementation
//===----------------------------------------------------------------------===//
/// Of the given two expressions returns one that is of type T (`lhs` gets
/// preference over `rhs`)
template <typename T>
static T getAffineExprOfType(AffineExpr lhs, AffineExpr rhs) {
return lhs.isa<T>() ? lhs.cast<T>()
: (rhs.isa<T>() ? rhs.cast<T>() : nullptr);
}
namespace {
/// Walk the indexing expressions for input of a convolution operation to verify
/// its of the right form, either
/// - AffineDimExpr
/// - AffineDimExpr (`*` (AffineSymbolExpr | AffineConstantExpr))?
/// (`+` AffineDimExpr (`*` (AffineSymbolExpr | AffineConstantExpr))?)*
///
/// classifies the AffineDimExpr as convolved dimensions or unconvolved
/// dimensions and verifies each dimension occurs only once.
struct ConvAccessExprWalker
: public AffineExprVisitor<ConvAccessExprWalker, LogicalResult> {
llvm::SmallDenseSet<unsigned> convolvedDims;
llvm::SmallDenseSet<unsigned> unConvolvedDims;
LogicalResult visitDimExpr(AffineDimExpr dimExpr) {
unsigned position = dimExpr.getPosition();
if (unConvolvedDims.count(position) || convolvedDims.count(position)) {
return failure();
}
unConvolvedDims.insert(position);
return success();
}
LogicalResult visitSymbolExpr(AffineSymbolExpr expr) { return failure(); }
LogicalResult visitConstantExpr(AffineConstantExpr expr) { return failure(); }
LogicalResult visitAffineBinaryOpExpr(AffineBinaryOpExpr binaryExpr) {
// In pre-order visit, top level op has to be an add op.
if (binaryExpr.getKind() != AffineExprKind::Add)
return failure();
return success(succeeded(isDimExprOrMulExpr(binaryExpr.getLHS())) &&
succeeded(isDimExprOrMulExpr(binaryExpr.getRHS())));
}
LogicalResult isDimExprOrMulExpr(AffineExpr expr) {
if (auto dimExpr = expr.dyn_cast<AffineDimExpr>()) {
unsigned dim = dimExpr.getPosition();
if (convolvedDims.count(dim) || unConvolvedDims.count(dim))
return failure();
convolvedDims.insert(dim);
return success();
}
if (auto symbolMulExpr = expr.dyn_cast<AffineBinaryOpExpr>()) {
if (symbolMulExpr.getKind() != AffineExprKind::Mul)
return failure();
auto lhsExpr = symbolMulExpr.getLHS();
auto rhsExpr = symbolMulExpr.getRHS();
// Check for symbol expression.
AffineExpr mulExpr =
getAffineExprOfType<AffineSymbolExpr>(lhsExpr, rhsExpr);
// If there was no symbol expr, check for constant expression.
if (!mulExpr) {
mulExpr = getAffineExprOfType<AffineConstantExpr>(lhsExpr, rhsExpr);
}
auto dimExpr = getAffineExprOfType<AffineDimExpr>(lhsExpr, rhsExpr);
if (!mulExpr || !dimExpr)
return failure();
unsigned dim = dimExpr.getPosition();
if (convolvedDims.count(dim) || unConvolvedDims.count(dim))
return failure();
convolvedDims.insert(dim);
return success();
}
return failure();
}
};
} // namespace
static llvm::SmallDenseSet<unsigned> getPreservedDims(AffineMap map) {
assert(map.isProjectedPermutation() &&
"expected map to have projected permutations");
llvm::SmallDenseSet<unsigned> preservedDims;
for (auto expr : map.getResults())
preservedDims.insert(expr.cast<AffineDimExpr>().getPosition());
return preservedDims;
}
enum class MatchConvolutionResult {
Success = 0,
NotLinalgOp,
WrongNumOperands,
WrongInputIndexingMap,
NotProjectedPermutations,
NonConvolutionLoop,
OutputDimsNotParallel,
NonOutputDimNotReduction
};
static MatchConvolutionResult isConvolutionInterfaceImpl(Operation *op) {
auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
if (!linalgOp)
return MatchConvolutionResult::NotLinalgOp;
if (linalgOp.getNumDpsInputs() < 2 || linalgOp.getNumDpsInits() != 1)
return MatchConvolutionResult::WrongNumOperands;
auto indexingMaps = linalgOp.getIndexingMapsArray();
// Check the input indexing map has the right form.
ConvAccessExprWalker inputExprWalker;
if (llvm::any_of(indexingMaps[0].getResults(),
[&inputExprWalker](AffineExpr expr) {
return failed(inputExprWalker.visit(expr));
})) {
return MatchConvolutionResult::WrongInputIndexingMap;
}
// Filter and output maps must be projected permutation.
if (!indexingMaps[1].isProjectedPermutation() ||
!indexingMaps.back().isProjectedPermutation())
return MatchConvolutionResult::NotProjectedPermutations;
auto iteratorTypes = linalgOp.getIteratorTypesArray();
llvm::SmallDenseSet<unsigned> outputDims =
getPreservedDims(indexingMaps.back());
llvm::SmallDenseSet<unsigned> filterDims = getPreservedDims(indexingMaps[1]);
// Make sure all loops are charecterized as one of:
// - Batch loop : present in output, as non-convolved in input, not present in
// filter.
// - Output image dimension : present in output, convolved dims in input, not
// present in filter.
// - Output channel dimension : present in output, not present in input,
// present in filter.
// - Filter loop dimension : present in filter, convolved in input, not
// present in output.
// - Input channel dimension : unconvolved in input, not present in output,
// present in filter.
// - Depth multiplier : unconvolved in input, present in output, present in
// filter.
llvm::SmallDenseSet<unsigned> allLoopDims;
for (auto outputExpr : indexingMaps.back().getResults()) {
unsigned outputDim = outputExpr.cast<AffineDimExpr>().getPosition();
if (inputExprWalker.unConvolvedDims.count(outputDim) &&
!filterDims.count(outputDim)) {
// Batch dimension.
if (iteratorTypes[outputDim] != utils::IteratorType::parallel)
return MatchConvolutionResult::OutputDimsNotParallel;
allLoopDims.insert(outputDim);
continue;
}
if (inputExprWalker.convolvedDims.count(outputDim) &&
!filterDims.count(outputDim)) {
// Output image Loop dimension.
if (iteratorTypes[outputDim] != utils::IteratorType::parallel)
return MatchConvolutionResult::OutputDimsNotParallel;
allLoopDims.insert(outputDim);
continue;
}
if (!inputExprWalker.convolvedDims.count(outputDim) &&
!inputExprWalker.unConvolvedDims.count(outputDim) &&
filterDims.count(outputDim)) {
// Output channel dimension.
if (iteratorTypes[outputDim] != utils::IteratorType::parallel)
return MatchConvolutionResult::OutputDimsNotParallel;
allLoopDims.insert(outputDim);
continue;
}
if (inputExprWalker.unConvolvedDims.count(outputDim) &&
filterDims.count(outputDim)) {
// Depth multiplier.
if (iteratorTypes[outputDim] != utils::IteratorType::parallel)
return MatchConvolutionResult::OutputDimsNotParallel;
allLoopDims.insert(outputDim);
continue;
}
return MatchConvolutionResult::NonConvolutionLoop;
}
for (auto filterExpr : indexingMaps[1].getResults()) {
unsigned filterDim = filterExpr.cast<AffineDimExpr>().getPosition();
if (outputDims.count(filterDim) &&
!inputExprWalker.unConvolvedDims.count(filterDim) &&
!inputExprWalker.convolvedDims.count(filterDim)) {
// Output channel dimension. THis is already seen, continue;
continue;
}
if (inputExprWalker.convolvedDims.count(filterDim) &&
!outputDims.count(filterDim)) {
// Filter loop dimension.
if (iteratorTypes[filterDim] != utils::IteratorType::reduction)
return MatchConvolutionResult::NonOutputDimNotReduction;
if (allLoopDims.count(filterDim))
return MatchConvolutionResult::NonConvolutionLoop;
allLoopDims.insert(filterDim);
continue;
}
if (inputExprWalker.unConvolvedDims.count(filterDim) &&
!outputDims.count(filterDim)) {
// Input channel dimension.
if (iteratorTypes[filterDim] != utils::IteratorType::reduction)
return MatchConvolutionResult::NonOutputDimNotReduction;
if (allLoopDims.count(filterDim))
return MatchConvolutionResult::NonConvolutionLoop;
allLoopDims.insert(filterDim);
continue;
}
if (inputExprWalker.unConvolvedDims.count(filterDim) &&
outputDims.count(filterDim)) {
// Depthwise loop. Already seen.
continue;
}
return MatchConvolutionResult::NonConvolutionLoop;
}
// All loops must be covered now.
if (allLoopDims.size() != linalgOp.getNumLoops())
return MatchConvolutionResult::NonConvolutionLoop;
return MatchConvolutionResult::Success;
}
LogicalResult mlir::linalg::detail::verifyConvolutionInterface(Operation *op) {
auto res = isConvolutionInterfaceImpl(op);
if (res == MatchConvolutionResult::NotLinalgOp)
return op->emitError("expected a LinalgOp");
if (res == MatchConvolutionResult::WrongNumOperands)
return op->emitError("expected op with 2 inputs and 1 output");
if (res == MatchConvolutionResult::WrongInputIndexingMap)
return op->emitError("unexpected input index map for convolutions");
if (res == MatchConvolutionResult::NotProjectedPermutations) {
return op->emitError(
"expected output/filter indexing maps to be projected permutations");
}
if (res == MatchConvolutionResult::NonConvolutionLoop) {
return op->emitError("unexpected loop dimension for convolution op");
}
if (res == MatchConvolutionResult::OutputDimsNotParallel) {
return op->emitError(
"expected all iterators used to access outputs to be parallel");
}
if (res == MatchConvolutionResult::NonOutputDimNotReduction) {
return op->emitError(
"expected all iterators not used to access outputs to be reduction");
}
return success();
}
//===----------------------------------------------------------------------===//
// FillOpInterface implementation
//===----------------------------------------------------------------------===//
enum class MatchFillResult {
Success = 0,
NotLinalgOp,
WrongNumOperands,
NotScalarInput
};
static MatchFillResult isFillInterfaceImpl(Operation *op) {
auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
if (!linalgOp)
return MatchFillResult::NotLinalgOp;
if (linalgOp.getNumDpsInputs() != 1 || linalgOp.getNumDpsInits() != 1)
return MatchFillResult::WrongNumOperands;
OpOperand *value = linalgOp.getDpsInputOperand(0);
if (!linalgOp.isScalar(value))
return MatchFillResult::NotScalarInput;
return MatchFillResult::Success;
}
LogicalResult mlir::linalg::detail::verifyFillInterface(Operation *op) {
auto res = isFillInterfaceImpl(op);
if (res == MatchFillResult::NotLinalgOp)
return op->emitError("expected a LinalgOp");
if (res == MatchFillResult::WrongNumOperands)
return op->emitError("expected op with 1 input and 1 output");
if (res == MatchFillResult::NotScalarInput)
return op->emitError("expected op with scalar input");
return success();
}
//===----------------------------------------------------------------------===//
// StructuredOpInterface implementation
//===----------------------------------------------------------------------===//
/// Helper function that creates a memref::DimOp or tensor::DimOp depending on
/// the type of `source`.
static Value createOrFoldDimOp(OpBuilder &b, Location loc, Value source,
int64_t dim) {
if (source.getType().isa<UnrankedMemRefType, MemRefType>())
return b.createOrFold<memref::DimOp>(loc, source, dim);
if (source.getType().isa<UnrankedTensorType, RankedTensorType>())
return b.createOrFold<tensor::DimOp>(loc, source, dim);
llvm_unreachable("Expected MemRefType or TensorType");
}
static OpFoldResult createFoldedDimOp(OpBuilder &b, Location loc, Value source,
int64_t dim) {
auto shapedType = source.getType().cast<ShapedType>();
if (!shapedType.hasRank() || shapedType.isDynamicDim(dim))
return createOrFoldDimOp(b, loc, source, dim);
return b.getIndexAttr(shapedType.getDimSize(dim));
}
SmallVector<OpFoldResult> LinalgOp::createFlatListOfOperandDims(OpBuilder &b,
Location loc) {
SmallVector<OpFoldResult> res;
for (OpOperand &opOperand : getOperation()->getOpOperands()) {
for (int64_t i = 0, e = getRank(&opOperand); i < e; ++i)
res.push_back(createFoldedDimOp(b, loc, opOperand.get(), i));
}
return res;
}
SmallVector<int64_t, 4> LinalgOp::createFlatListOfOperandStaticDims() {
SmallVector<int64_t, 4> res;
assert(!hasDynamicShape() && "expected operands to have static shapes");
for (OpOperand &opOperand : getOperation()->getOpOperands())
llvm::append_range(res, getShape(&opOperand));
return res;
}
SmallVector<Range, 4> LinalgOp::createLoopRanges(OpBuilder &b, Location loc) {
AffineMap map = getLoopsToShapesMap();
unsigned numDims = map.getNumDims(), numRes = map.getNumResults();
auto viewSizes = createFlatListOfOperandDims(b, loc);
SmallVector<Range, 4> res(numDims);
for (unsigned idx = 0; idx < numRes; ++idx) {
auto result = map.getResult(idx);
if (auto d = result.dyn_cast<AffineDimExpr>()) {
if (res[d.getPosition()].offset)
continue;
res[d.getPosition()] =
Range{b.getIndexAttr(0), viewSizes[idx], b.getIndexAttr(1)};
}
}
return res;
}
SmallVector<int64_t, 4> LinalgOp::computeStaticLoopSizes() {
AffineMap map = getLoopsToShapesMap();
unsigned numDims = map.getNumDims(), numRes = map.getNumResults();
SmallVector<int64_t, 4> allShapeSizes = createFlatListOfOperandStaticDims();
SmallVector<int64_t, 4> res(numDims, 0);
for (unsigned idx = 0; idx < numRes; ++idx) {
auto result = map.getResult(idx);
if (auto d = result.dyn_cast<AffineDimExpr>())
res[d.getPosition()] = allShapeSizes[idx];
}
return res;
}
/// Visitor to check if any of the given set of positions from AffineDimExprs
/// are used within an AffineExpr.
struct HasAffineDimExprVisitor
: public AffineExprVisitor<HasAffineDimExprVisitor, bool> {
HasAffineDimExprVisitor(llvm::SmallBitVector positions)
: positions(std::move(positions)) {}
bool visitAffineBinaryOpExpr(AffineBinaryOpExpr binaryOpExpr) {
return visit(binaryOpExpr.getLHS()) || visit(binaryOpExpr.getRHS());
}
bool visitDimExpr(AffineDimExpr dimExpr) {
return positions.test(dimExpr.getPosition());
}
bool visitConstantExpr(AffineConstantExpr constExpr) { return false; }
bool visitSymbolExpr(AffineSymbolExpr symbolExpr) { return false; }
private:
llvm::SmallBitVector positions;
};
static std::pair<int64_t, int64_t>
getResultsPositionInLoopsToShapeMap(LinalgOp &op) {
int64_t inputRankSum = 0;
int64_t outputRankSum = 0;
for (OpOperand *input : op.getDpsInputOperands())
inputRankSum += op.getRank(input);
for (OpOperand *output : op.getDpsInitOperands())
outputRankSum += op.getRank(output);
return {inputRankSum, inputRankSum + outputRankSum};
}
LogicalResult
LinalgOp::reifyResultShapes(OpBuilder &b,
ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
// An example that helps understand the logic below.
// Consider the following expression O(i+j, j) += A(i,k) * B(k, j)
// We want to express the shape of dim 0 of O in terms of shape of the inputs.
// This is achieved as follows.
// loopsToShapesMap = (d0, d1, d2) -> (d0, d2, d2, d1, d0 + d1, d1)
// subMapOfResultShapes = (d0, d1, d2) -> (d0 + d1, d1)
// shapesToLoopsMap = (d0, d2, d2, d3, d4, d5) -> (d0, d3, d2)
// resultShapesFromInputShapes = subMapOfResultDim.compose(shapesToLoopMap)
// = (d0, d1, d2, d3, d4, d5) -> (d0 + d1, d1)
AffineMap loopsToShapesMap = getLoopsToShapesMap();
// Find the position in the above map that represents the shape of the
// result:dim being inferred.
auto resultShapesSubMapPos = getResultsPositionInLoopsToShapeMap(*this);
/// From loopsToShapesMap extract the submap that represents the shape of the
/// (resultIdx, dim) needed.
AffineMap loopToResultsShapeMap = loopsToShapesMap.getSliceMap(
resultShapesSubMapPos.first,
resultShapesSubMapPos.second - resultShapesSubMapPos.first);
AffineMap resultShapesFromInputShapesMap =
loopToResultsShapeMap.compose(getShapesToLoopsMap());
// Check that the result dim map does not contain the positions corresponding
// to the outputs.
llvm::SmallBitVector outputDims(resultShapesFromInputShapesMap.getNumDims());
outputDims.set(resultShapesSubMapPos.first, resultShapesSubMapPos.second);
HasAffineDimExprVisitor checkDimExpr(std::move(outputDims));
Location loc = getOperation()->getLoc();
IRRewriter rewriter(b);
SmallVector<OpFoldResult> allResultDimValues =
makeComposedFoldedMultiResultAffineApply(
rewriter, loc, resultShapesFromInputShapesMap,
createFlatListOfOperandDims(b, loc));
int64_t pos = 0;
ArrayRef<AffineExpr> shapeExprs = resultShapesFromInputShapesMap.getResults();
for (OpOperand *opOperand : getDpsInitOperands()) {
SmallVector<Value> shapes;
for (int64_t dim : llvm::seq<int64_t>(0, getRank(opOperand))) {
if (checkDimExpr.visit(shapeExprs[pos]))
shapes.push_back(createOrFoldDimOp(b, loc, opOperand->get(), dim));
else
shapes.push_back(
getValueOrCreateConstantIndexOp(b, loc, allResultDimValues[pos]));
pos++;
}
reifiedReturnShapes.emplace_back(std::move(shapes));
}
return success();
}
LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
LinalgOp linalgOp = cast<LinalgOp>(op);
// Before checking indexing maps, we need to make sure the attributes
// referenced by it are valid.
if (linalgOp.hasDynamicIndexingMaps())
if (failed(linalgOp.verifyIndexingMapRequiredAttributes()))
return failure();
// All input/output operands must be indexed.
if (static_cast<int64_t>(linalgOp.getIndexingMapsArray().size()) !=
linalgOp->getNumOperands())
return op->emitOpError("expected the number of indexing_map (")
<< linalgOp.getIndexingMapsArray().size()
<< ") to be equal to the number of input/output operands ("
<< linalgOp->getNumOperands() << ")";
for (OpOperand &opOperand : linalgOp->getOpOperands()) {
AffineMap indexingMap = linalgOp.getMatchingIndexingMap(&opOperand);
// Symbols disallowed.
if (indexingMap.getNumSymbols() != 0)
return op->emitOpError("unexpected symbols in indexing_map #")
<< opOperand.getOperandNumber();
// Domain must be consistent.
unsigned numLoops = linalgOp.getNumLoops();
if (indexingMap.getNumDims() != numLoops)
return op->emitOpError("expected indexing_map #")
<< opOperand.getOperandNumber() << " to have " << numLoops
<< " dim(s) to match the number of loops";
int64_t rank = linalgOp.getRank(&opOperand);
if (indexingMap.getNumResults() != rank)
return op->emitOpError("expected operand rank (")
<< rank << ") to match the result rank of indexing_map #"
<< opOperand.getOperandNumber() << " ("
<< indexingMap.getNumResults() << ")";
}
SmallVector<unsigned> redDims;
linalgOp.getReductionDims(redDims);
if (!linalgOp.getShapesToLoopsMap())
return op->emitOpError("expected the shape-to-loops map to be non-null");
// Check if given shapes match to inferred shapes.
SmallVector<int64_t, 4> endLoopRangeValues = linalgOp.getStaticLoopRanges();
SmallVector<int64_t, 4> startLoopRangeValues(endLoopRangeValues.size(), 0);
// Verify only static cases since we can't get exact dimension sizes and loop
// ranges for dynamic cases in this stage.
if (llvm::none_of(endLoopRangeValues, ShapedType::isDynamic)) {
for (int64_t &range : endLoopRangeValues)
range -= 1;
for (OpOperand &opOperand : linalgOp->getOpOperands()) {
AffineMap indexingMap = linalgOp.getMatchingIndexingMap(&opOperand);
SmallVector<int64_t, 4> startIndices =
indexingMap.compose(startLoopRangeValues);
SmallVector<int64_t, 4> endIndices =
indexingMap.compose(endLoopRangeValues);
ArrayRef<int64_t> shape = linalgOp.getShape(&opOperand);
for (auto dim : llvm::seq<int64_t>(0, shape.size())) {
// Ignore dynamic dimension or the case that the dimension size is 0
if (ShapedType::isDynamic(shape[dim]) || shape[dim] == 0)
continue;
// The first index or last index should be the maximum or the minimum in
// the inferred index ranges since the range is increasing or
// decreasing. The size of dimensions of input/output operands and the
// maximum value + 1 in the inferred range should be the same. But, for
// now we check if the inferred ranges are in boundary of input/output
// operands' size or not in case that Affine Expressions are complicated
// such as d0 * 3
// + d1 since it is not easy to handle the issues.
// Found the case that this solution can't check, for example, (d0, d1)
// -> (d1 - d0)
int64_t inferredDimSize =
std::max(startIndices[dim], endIndices[dim]) + 1;
if (std::min(startIndices[dim], endIndices[dim]) < 0) {
std::string mapStr;
{
llvm::raw_string_ostream os(mapStr);
os << indexingMap;
}
return op->emitOpError(
"unexpected result less than 0 at expression #")
<< dim << " in " << mapStr;
}
if (indexingMap.getResult(dim).dyn_cast<AffineDimExpr>()) {
if (inferredDimSize != shape[dim]) {
return op->emitOpError("inferred input/output operand #")
<< opOperand.getOperandNumber() << " has shape's dimension #"
<< dim << " to be " << inferredDimSize << ", but found "
<< shape[dim];
}
} else {
if (inferredDimSize > shape[dim]) {
return op->emitOpError("inferred input/output operand #")
<< opOperand.getOperandNumber() << " has shape's dimension #"
<< dim << " to be greater than or equal to "
<< inferredDimSize << ", but found " << shape[dim];
}
}
}
}
}
// Check the region has exactly one block.
if (linalgOp->getNumRegions() != 1 ||
!llvm::hasSingleElement(linalgOp->getRegion(0)))
return op->emitOpError("expects to have 1 region with 1 block");
// Simplifying assumption: bbargs match 1-1 with shape operands elemental
// types.
// TODO: once ranked shape types are plugged in, we may want to drop the
// corresponding bbargs, that can never be read from. This will be subject to
// consistency discussions (i.e. what to do with output tensors whose bbarg is
// not used).
Block &block = linalgOp->getRegion(0).front();
if (linalgOp.getOpOperandsMatchingBBargs().size() != block.getNumArguments())
return op->emitOpError("expected as many non-induction variable region "
"arguments as the number of input/output operands");
for (OpOperand *opOperand : linalgOp.getOpOperandsMatchingBBargs()) {
Type elementType = getElementTypeOrSelf(opOperand->get());
Type argType = block.getArgument(opOperand->getOperandNumber()).getType();
if (elementType != argType)
return op->emitOpError("expected type of bb argument #")
<< opOperand->getOperandNumber() << " (" << argType << ")"
<< " to match element or self type of the corresponding operand ("
<< elementType << ")";
}
return success();
}