Files
clang-p2996/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
Matthias Springer 6b76c4eafd [mlir][linalg] Bring populateFoldUnitExtentDimsVia(Reshapes/Slices)Patterns in sync
Make sure that both functions populate patterns with the same functionality. Both should be refactored at some point so that canonicalization patterns are not populated.

Differential Revision: https://reviews.llvm.org/D140372
2022-12-20 13:10:12 +01:00

727 lines
30 KiB
C++

//===- DropUnitDims.cpp - Pass to drop use of unit-extent for broadcasting ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns/pass to remove usage of unit-extent dimensions
// to specify broadcasting in favor of more canonical representation of the
// computation
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
namespace mlir {
#define GEN_PASS_DEF_LINALGFOLDUNITEXTENTDIMS
#include "mlir/Dialect/Linalg/Passes.h.inc"
} // namespace mlir
#define DEBUG_TYPE "linalg-drop-unit-dims"
using namespace mlir;
using namespace mlir::linalg;
namespace {
enum class RankReductionStrategy { ReassociativeReshape, ExtractInsertSlice };
} // namespace
/// Implements a pass that canonicalizes the uses of unit-extent dimensions for
/// broadcasting. For example,
///
/// ```mlir
/// #accesses = [
/// affine_map<(d0, d1) -> (0, d1)>,
/// affine_map<(d0, d1) -> (d0, 0)>,
/// affine_map<(d0, d1) -> (d0, d1)>
/// ]
///
/// #trait = {
/// args_in = 2,
/// args_out = 1,
/// indexing_maps = #accesses,
/// iterator_types = ["parallel", "parallel"],
/// library_call = "some_external_fn"
/// }
///
/// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
/// tensor<5x5xf32>
/// {
/// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] :
/// tensor<5xf32> into tensor<1x5xf32>
/// %1 = linalg.tensor_reshape %arg1 [affine_map<(d0, d1) -> (d0, d1)>] :
/// tensor<5xf32> into tensor<5x1xf32>
/// %2 = linalg.generic #trait %0, %1 {
/// ^bb0(%arg2: f32, %arg3: f32):
/// %3 = arith.addf %arg2, %arg3 : f32
/// linalg.yield %3 : f32
/// } : tensor<1x5xf32>, tensor<5x1xf32> -> tensor<5x5xf32>
/// return %2 : tensor<5x5xf32>
/// }
///
/// would canonicalize to
///
/// ```mlir
/// #accesses = [
/// affine_map<(d0, d1) -> (d1)>,
/// affine_map<(d0, d1) -> (d0)>,
/// affine_map<(d0, d1) -> (d0, d1)>
/// ]
///
/// #trait = {
/// args_in = 2,
/// args_out = 1,
/// indexing_maps = #accesses,
/// iterator_types = ["parallel", "parallel"],
/// library_call = "some_external_fn"
/// }
///
/// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
/// tensor<5x5xf32>
/// {
/// %0 = linalg.generic #trait %arg0, %arg1 {
/// ^bb0(%arg2: f32, %arg3: f32):
/// %3 = arith.addf %arg2, %arg3 : f32
/// linalg.yield %3 : f32
/// } : tensor<5xf32>, tensor<5xf32> -> tensor<5x5xf32>
/// return %0 : tensor<5x5xf32>
/// }
/// Given dims of the iteration space of a structured op that are known to be
/// single trip count (`unitDims`), return the indexing maps to use in the
/// canonicalized op with these dims removed, given the original `indexingMaps`.
static ArrayAttr replaceUnitDims(DenseSet<unsigned> &unitDims,
ArrayRef<AffineMap> indexingMaps,
MLIRContext *context) {
if (indexingMaps.empty())
return nullptr;
unsigned numIterationDims = indexingMaps.front().getNumDims();
unsigned numSymbols = indexingMaps.front().getNumSymbols();
// Compute the replacement for each dim expr.
SmallVector<AffineExpr, 4> dimReplacements;
dimReplacements.reserve(numIterationDims);
unsigned numKeptDims = 0;
for (unsigned dim : llvm::seq<unsigned>(0, numIterationDims)) {
if (unitDims.count(dim))
dimReplacements.push_back(getAffineConstantExpr(0, context));
else
dimReplacements.push_back(getAffineDimExpr(numKeptDims++, context));
}
// Symbols remain the same.
SmallVector<AffineExpr, 4> symReplacements;
symReplacements.reserve(numSymbols);
for (unsigned symbol : llvm::seq<unsigned>(0, numSymbols))
symReplacements.push_back(getAffineSymbolExpr(symbol, context));
SmallVector<AffineMap, 4> newIndexingMaps;
newIndexingMaps.reserve(indexingMaps.size());
for (AffineMap operandMap : indexingMaps) {
// Expected indexing maps to have no symbols.
if (operandMap.getNumSymbols())
return nullptr;
newIndexingMaps.push_back(simplifyAffineMap(
operandMap.replaceDimsAndSymbols(dimReplacements, symReplacements,
numIterationDims - unitDims.size(),
numSymbols)));
}
// Check that the new index maps are invertible. If not, something went
// wrong, so abort.
if (!inversePermutation(concatAffineMaps(newIndexingMaps)))
return nullptr;
return ArrayAttr::get(context,
llvm::to_vector<4>(llvm::map_range(
newIndexingMaps, [](AffineMap map) -> Attribute {
return AffineMapAttr::get(map);
})));
}
/// Update the index accesses of linalg operations having index semantics.
static void replaceUnitDimIndexOps(GenericOp genericOp,
const DenseSet<unsigned> &unitDims,
PatternRewriter &rewriter) {
for (IndexOp indexOp :
llvm::make_early_inc_range(genericOp.getBody()->getOps<IndexOp>())) {
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(indexOp);
if (unitDims.count(indexOp.getDim()) != 0) {
rewriter.replaceOpWithNewOp<arith::ConstantIndexOp>(indexOp, 0);
} else {
// Update the dimension of the index operation if needed.
unsigned droppedDims = llvm::count_if(
unitDims, [&](unsigned dim) { return dim < indexOp.getDim(); });
if (droppedDims != 0)
rewriter.replaceOpWithNewOp<IndexOp>(indexOp,
indexOp.getDim() - droppedDims);
}
}
}
namespace {
/// Pattern to fold unit-trip count loops in GenericOps.
struct FoldUnitDimLoops : public OpRewritePattern<GenericOp> {
using OpRewritePattern<GenericOp>::OpRewritePattern;
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
SmallVector<AffineMap, 4> indexingMaps = genericOp.getIndexingMapsArray();
if (indexingMaps.empty())
return failure();
// Check if any of the iteration dimensions are unit-trip count. They will
// end up being unit-trip count if they are used to index into a unit-dim
// tensor/memref.
AffineMap invertedMap = inversePermutation(concatAffineMaps(indexingMaps));
if (!invertedMap)
return failure();
SmallVector<int64_t> dims = genericOp.getStaticShape();
DenseSet<unsigned> unitDims;
SmallVector<unsigned, 4> unitDimsReductionLoops;
ArrayAttr iteratorTypes = genericOp.getIteratorTypes();
for (const auto &expr : enumerate(invertedMap.getResults())) {
if (AffineDimExpr dimExpr = expr.value().dyn_cast<AffineDimExpr>())
if (dims[dimExpr.getPosition()] == 1)
unitDims.insert(expr.index());
}
if (unitDims.empty())
return failure();
// Compute the modified indexing maps.
MLIRContext *context = rewriter.getContext();
ArrayAttr newIndexingMapAttr =
replaceUnitDims(unitDims, indexingMaps, context);
if (!newIndexingMapAttr)
return genericOp.emitError("unable to compute modified indexing_maps");
// Compute the iterator types of the modified op by dropping the one-trip
// count loops.
SmallVector<Attribute, 4> newIteratorTypes;
for (const auto &attr : llvm::enumerate(iteratorTypes)) {
if (!unitDims.count(attr.index()))
newIteratorTypes.push_back(attr.value());
}
rewriter.startRootUpdate(genericOp);
genericOp.setIndexingMapsAttr(newIndexingMapAttr);
genericOp.setIteratorTypesAttr(ArrayAttr::get(context, newIteratorTypes));
replaceUnitDimIndexOps(genericOp, unitDims, rewriter);
rewriter.finalizeRootUpdate(genericOp);
return success();
}
};
/// Pattern to move init operands to ins when all the loops are parallel and
/// blockArgument corresponding to init is used in the region. This is a fix-up
/// when unit reduction dimensions are all folded away. In this context, it
/// becomes a elementwise generic op. E.g., it converts
///
/// %0 = tensor.empty() : tensor<1x1xf32>
/// %1 = linalg.fill
/// ins(%cst : f32)
/// outs(%0 : tensor<1x1xf32>) -> tensor<1x1xf32>
/// %2 = linalg.generic {indexing_maps = [affine_map<(d0) -> (0, d0, 0, 0)>,
/// affine_map<(d0) -> (0, d0)>],
/// iterator_types = ["parallel"]}
/// ins(%arg0 : tensor<1x?x1x1xf32>)
/// outs(%1 : tensor<1x1xf32>) {
/// ^bb0(%in: f32, %out: f32):
/// %3 = arith.addf %in, %out : f32
/// linalg.yield %3 : f32
/// } -> tensor<1x1xf32>
///
/// into
///
/// %0 = tensor.empty() : tensor<1x1xf32>
/// %1 = linalg.fill
/// ins(%cst : f32)
/// outs(%0 : tensor<1x1xf32>) -> tensor<1x1xf32>
/// %2 = tensor.empty() : tensor<1x1xf32>
/// %3 = linalg.generic {indexing_maps = [affine_map<(d0) -> (0, d0, 0, 0)>,
/// affine_map<(d0) -> (0, d0)>,
/// affine_map<(d0) -> (0, d0)>],
/// iterator_types = ["parallel"]}
/// ins(%arg0, %1 : tensor<1x?x1x1xf32>, tensor<1x1xf32>)
/// outs(%2 : tensor<1x1xf32>) {
/// ^bb0(%in: f32, %in_0: f32, %out: f32):
/// %4 = arith.addf %in, %in_0 : f32
/// linalg.yield %4 : f32
/// } -> tensor<1x1xf32>
struct MoveInitOperandsToInput : public OpRewritePattern<GenericOp> {
using OpRewritePattern<GenericOp>::OpRewritePattern;
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
if (!genericOp.hasTensorSemantics())
return failure();
if (genericOp.getNumParallelLoops() != genericOp.getNumLoops())
return failure();
auto outputOperands = genericOp.getDpsInitOperands();
SetVector<OpOperand *> candidates;
for (OpOperand *op : outputOperands) {
if (genericOp.getMatchingBlockArgument(op).use_empty())
continue;
candidates.insert(op);
}
if (candidates.empty())
return failure();
// Compute the modified indexing maps.
int64_t origNumInput = genericOp.getNumDpsInputs();
SmallVector<Value> newInputOperands = genericOp.getDpsInputOperands();
SmallVector<AffineMap> indexingMaps = genericOp.getIndexingMapsArray();
SmallVector<AffineMap> newIndexingMaps;
newIndexingMaps.append(indexingMaps.begin(),
std::next(indexingMaps.begin(), origNumInput));
for (OpOperand *op : candidates) {
newInputOperands.push_back(op->get());
newIndexingMaps.push_back(genericOp.getMatchingIndexingMap(op));
}
newIndexingMaps.append(std::next(indexingMaps.begin(), origNumInput),
indexingMaps.end());
Location loc = genericOp.getLoc();
SmallVector<Value> newOutputOperands = outputOperands;
for (OpOperand *op : candidates) {
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointAfterValue(op->get());
auto elemType = op->get().getType().cast<ShapedType>().getElementType();
auto empty = rewriter.create<tensor::EmptyOp>(
loc, tensor::createDimValues(rewriter, loc, op->get()), elemType);
auto [start, end] = genericOp.getDpsInitsPositionRange();
newOutputOperands[op->getOperandNumber() - start] = empty.getResult();
}
auto newOp = rewriter.create<GenericOp>(
loc, genericOp.getResultTypes(), newInputOperands, newOutputOperands,
newIndexingMaps, genericOp.getIteratorTypesArray(),
/*bodyBuild=*/nullptr, linalg::getPrunedAttributeList(genericOp));
Region &region = newOp.getRegion();
Block *block = new Block();
region.push_back(block);
BlockAndValueMapping mapper;
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(block);
for (auto bbarg : genericOp.getRegionInputArgs())
mapper.map(bbarg, block->addArgument(bbarg.getType(), loc));
for (OpOperand *op : candidates) {
BlockArgument bbarg = genericOp.getMatchingBlockArgument(op);
mapper.map(bbarg, block->addArgument(bbarg.getType(), loc));
}
for (OpOperand *op : outputOperands) {
BlockArgument bbarg = genericOp.getMatchingBlockArgument(op);
if (candidates.count(op))
block->addArgument(bbarg.getType(), loc);
else
mapper.map(bbarg, block->addArgument(bbarg.getType(), loc));
}
for (auto &op : genericOp.getBody()->getOperations()) {
rewriter.clone(op, mapper);
}
rewriter.replaceOp(genericOp, newOp.getResults());
return success();
}
};
struct UnitExtentReplacementInfo {
AffineMap indexMap;
SmallVector<ReassociationIndices> reassociation;
SmallVector<int64_t> targetShape;
};
} // namespace
/// Utility function for replacing operands/results to a linalg generic
/// operation with unit-extent dimensions. These can be replaced with
/// an operand/result with the unit-extent dimension removed. This is only done
/// if the indexing map used to access that dimension has a
/// AffineConstantExpr of value 0. Given the `type` of an result/operand of a
/// Linalg op, and its `indexMap` the utility function returns:
/// - the new type with dimensions of size 1 removed.
/// - modified index map that can be used to access the replaced result/operand
/// - the reassociation that converts from the original tensor type to the
/// modified tensor type.
static std::optional<UnitExtentReplacementInfo>
replaceUnitExtents(GenericOp genericOp, OpOperand *opOperand,
MLIRContext *context) {
AffineMap indexingMap = genericOp.getMatchingIndexingMap(opOperand);
ArrayRef<int64_t> shape = genericOp.getShape(opOperand);
ArrayRef<AffineExpr> exprs = indexingMap.getResults();
SmallVector<AffineExpr> newIndexExprs;
SmallVector<int64_t> newShape;
int64_t origRank = genericOp.getRank(opOperand);
AffineExpr zeroExpr = getAffineConstantExpr(0, context);
auto isUnitExtent = [&](int64_t dim) -> bool {
return shape[dim] == 1 && exprs[dim] == zeroExpr;
};
// Early return for memrefs with affine maps to represent that we will always
// leave them unchanged.
Type actualType = opOperand->get().getType();
if (auto memref = actualType.dyn_cast<MemRefType>()) {
if (!memref.getLayout().isIdentity())
return std::nullopt;
}
int64_t dim = 0;
SmallVector<ReassociationIndices> reassociation;
ReassociationIndices reassociationGroup;
// Fold dimensions that are unit-extent at the beginning of the tensor.
while (dim < origRank && isUnitExtent(dim))
reassociationGroup.push_back(dim++);
while (dim < origRank) {
assert(!isUnitExtent(dim) && "expected non unit-extent");
reassociationGroup.push_back(dim);
newIndexExprs.push_back(exprs[dim]);
newShape.push_back(shape[dim]);
++dim;
// Fold all following dimensions that are unit-extent.
while (dim < origRank && isUnitExtent(dim))
reassociationGroup.push_back(dim++);
reassociation.push_back(reassociationGroup);
reassociationGroup.clear();
}
// Return if the rank was not reduced.
if (origRank == static_cast<int64_t>(newShape.size()))
return std::nullopt;
UnitExtentReplacementInfo info = {
/*indexMap=*/AffineMap::get(indexingMap.getNumDims(),
indexingMap.getNumSymbols(), newIndexExprs,
context),
/*reassociation=*/reassociation, /*targetShape=*/newShape};
return info;
}
namespace {
/// Pattern to replace tensor/buffer operands/results that are unit extents.
struct ReplaceUnitExtents : public OpRewritePattern<GenericOp> {
ReplaceUnitExtents(MLIRContext *ctx,
RankReductionStrategy rankReductionStrategy)
: OpRewritePattern<GenericOp>(ctx),
rankReductionStrategy(rankReductionStrategy) {}
// Expand the given value.
Value expandValue(Value result, Value origOutput,
ArrayRef<ReassociationIndices> reassociation, Location loc,
PatternRewriter &rewriter) const {
// There are no results for memref outputs.
auto origResultType = origOutput.getType().cast<RankedTensorType>();
if (rankReductionStrategy == RankReductionStrategy::ExtractInsertSlice) {
unsigned rank = origResultType.getRank();
SmallVector<OpFoldResult> offsets(rank, rewriter.getIndexAttr(0));
SmallVector<OpFoldResult> sizes =
tensor::getMixedSizes(rewriter, loc, origOutput);
SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1));
return rewriter.createOrFold<tensor::InsertSliceOp>(
loc, result, origOutput, offsets, sizes, strides);
}
assert(rankReductionStrategy ==
RankReductionStrategy::ReassociativeReshape &&
"unknown rank reduction strategy");
return rewriter.create<tensor::ExpandShapeOp>(loc, origResultType, result,
reassociation);
}
// Collapse the given value.
Value collapseValue(Value operand, ArrayRef<int64_t> targetShape,
ArrayRef<ReassociationIndices> reassociation,
Location loc, PatternRewriter &rewriter) const {
if (auto memrefType = operand.getType().dyn_cast<MemRefType>()) {
if (rankReductionStrategy == RankReductionStrategy::ExtractInsertSlice) {
FailureOr<Value> rankReducingExtract =
memref::SubViewOp::rankReduceIfNeeded(rewriter, loc, operand,
targetShape);
assert(succeeded(rankReducingExtract) && "not a unit-extent collapse");
return *rankReducingExtract;
}
assert(rankReductionStrategy ==
RankReductionStrategy::ReassociativeReshape &&
"unknown rank reduction strategy");
MemRefLayoutAttrInterface layout;
auto targetType =
MemRefType::get(targetShape, memrefType.getElementType(), layout,
memrefType.getMemorySpace());
return rewriter.create<memref::CollapseShapeOp>(loc, targetType, operand,
reassociation);
}
if (auto tensorType = operand.getType().dyn_cast<RankedTensorType>()) {
if (rankReductionStrategy == RankReductionStrategy::ExtractInsertSlice) {
FailureOr<Value> rankReducingExtract =
tensor::ExtractSliceOp::rankReduceIfNeeded(rewriter, loc, operand,
targetShape);
assert(succeeded(rankReducingExtract) && "not a unit-extent collapse");
return *rankReducingExtract;
}
assert(rankReductionStrategy ==
RankReductionStrategy::ReassociativeReshape &&
"unknown rank reduction strategy");
auto targetType =
RankedTensorType::get(targetShape, tensorType.getElementType());
return rewriter.create<tensor::CollapseShapeOp>(loc, targetType, operand,
reassociation);
}
llvm_unreachable("unsupported operand type");
}
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
// Skip the pattern if the op has any tensor with special encoding.
if (llvm::any_of(genericOp->getOperandTypes(), [](Type type) {
auto tensorType = type.dyn_cast<RankedTensorType>();
return tensorType && tensorType.getEncoding() != nullptr;
}))
return failure();
MLIRContext *context = rewriter.getContext();
Location loc = genericOp.getLoc();
SmallVector<Value> oldOutputs(genericOp.getOutputs().begin(),
genericOp.getOutputs().end());
SmallVector<AffineMap> newIndexingMaps;
SmallVector<SmallVector<ReassociationIndices>> reassociations;
SmallVector<SmallVector<int64_t>> targetShapes;
SmallVector<bool> collapsed;
for (OpOperand &opOperand : genericOp->getOpOperands()) {
auto replacementInfo = replaceUnitExtents(genericOp, &opOperand, context);
if (replacementInfo) {
reassociations.push_back(replacementInfo->reassociation);
newIndexingMaps.push_back(replacementInfo->indexMap);
targetShapes.push_back(replacementInfo->targetShape);
collapsed.push_back(true);
} else {
// If replaceUnitExtents cannot handle this case (or no unit dim was
// removed), maintain the same type, indexing map, and create a set of
// mappings representing an identity matrix.
newIndexingMaps.push_back(genericOp.getMatchingIndexingMap(&opOperand));
reassociations.emplace_back();
targetShapes.emplace_back();
collapsed.push_back(false);
}
}
// Abort if the indexing maps of the result operation are not invertible
// (i.e. not legal) or if no dimension was reduced.
if (!llvm::any_of(collapsed, [](bool c) { return c; }) ||
!inversePermutation(concatAffineMaps(newIndexingMaps)))
return failure();
// Insert rank reductions.
SmallVector<Value> newOperands;
for (OpOperand &opOperand : genericOp->getOpOperands()) {
int64_t idx = opOperand.getOperandNumber();
if (!collapsed[idx]) {
newOperands.push_back(opOperand.get());
continue;
}
newOperands.push_back(collapseValue(opOperand.get(), targetShapes[idx],
reassociations[idx], loc, rewriter));
}
// If any result type changes, insert a reshape to convert from the original
// type to the new type.
ArrayRef<Value> newInputs =
ArrayRef<Value>(newOperands).take_front(genericOp.getNumDpsInputs());
ArrayRef<Value> newOutputs =
ArrayRef<Value>(newOperands).take_back(genericOp.getNumDpsInits());
SmallVector<Type> resultTypes;
resultTypes.reserve(genericOp.getNumResults());
for (unsigned i : llvm::seq<unsigned>(0, genericOp.getNumResults()))
resultTypes.push_back(newOutputs[i].getType());
GenericOp replacementOp = rewriter.create<GenericOp>(
loc, resultTypes, newInputs, newOutputs, newIndexingMaps,
genericOp.getIteratorTypesArray());
rewriter.inlineRegionBefore(genericOp.getRegion(),
replacementOp.getRegion(),
replacementOp.getRegion().begin());
// If any result tensor has a modified shape, then add reshape to recover
// the original shape.
SmallVector<Value> resultReplacements;
for (const auto &result : llvm::enumerate(replacementOp.getResults())) {
unsigned index = result.index() + replacementOp.getNumDpsInputs();
Value origOutput = oldOutputs[result.index()];
if (!collapsed[result.index() + genericOp.getNumDpsInputs()]) {
resultReplacements.push_back(result.value());
continue;
}
resultReplacements.push_back(expandValue(
result.value(), origOutput, reassociations[index], loc, rewriter));
}
rewriter.replaceOp(genericOp, resultReplacements);
return success();
}
private:
RankReductionStrategy rankReductionStrategy;
};
} // namespace
namespace {
/// Convert `extract_slice` operations to rank-reduced versions.
struct RankReducedExtractSliceOp
: public OpRewritePattern<tensor::ExtractSliceOp> {
using OpRewritePattern<tensor::ExtractSliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::ExtractSliceOp sliceOp,
PatternRewriter &rewriter) const override {
RankedTensorType resultType = sliceOp.getType();
SmallVector<OpFoldResult> offsets = sliceOp.getMixedOffsets();
SmallVector<OpFoldResult> sizes = sliceOp.getMixedSizes();
SmallVector<OpFoldResult> strides = sliceOp.getMixedStrides();
auto reassociation = getReassociationMapForFoldingUnitDims(sizes);
if (!reassociation ||
reassociation->size() == static_cast<size_t>(resultType.getRank()))
return failure();
auto rankReducedType =
tensor::ExtractSliceOp::inferCanonicalRankReducedResultType(
reassociation->size(), sliceOp.getSourceType(), offsets, sizes,
strides)
.cast<RankedTensorType>();
Location loc = sliceOp.getLoc();
Value newSlice = rewriter.create<tensor::ExtractSliceOp>(
loc, rankReducedType, sliceOp.getSource(), offsets, sizes, strides);
rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>(
sliceOp, resultType, newSlice, *reassociation);
return success();
}
};
/// Convert `insert_slice` operations to rank-reduced versions.
/// This patterns works with both InsertSliceOp and ParallelInsertSliceOp.
template <typename InsertOpTy>
struct RankReducedInsertSliceOp : public OpRewritePattern<InsertOpTy> {
using OpRewritePattern<InsertOpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(InsertOpTy insertSliceOp,
PatternRewriter &rewriter) const override {
RankedTensorType sourceType = insertSliceOp.getSourceType();
SmallVector<OpFoldResult> offsets = insertSliceOp.getMixedOffsets();
SmallVector<OpFoldResult> sizes = insertSliceOp.getMixedSizes();
SmallVector<OpFoldResult> strides = insertSliceOp.getMixedStrides();
auto reassociation = getReassociationMapForFoldingUnitDims(sizes);
if (!reassociation ||
reassociation->size() == static_cast<size_t>(sourceType.getRank()))
return failure();
Location loc = insertSliceOp.getLoc();
tensor::CollapseShapeOp reshapedSource;
{
OpBuilder::InsertionGuard g(rewriter);
// The only difference between InsertSliceOp and ParallelInsertSliceOp is
// the insertion point is just before the ParallelCombiningOp in the
// parallel case.
if (std::is_same<InsertOpTy, tensor::ParallelInsertSliceOp>::value)
rewriter.setInsertionPoint(insertSliceOp->getParentOp());
reshapedSource = rewriter.create<tensor::CollapseShapeOp>(
loc, insertSliceOp.getSource(), *reassociation);
}
rewriter.replaceOpWithNewOp<InsertOpTy>(
insertSliceOp, reshapedSource, insertSliceOp.getDest(),
insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(),
insertSliceOp.getMixedStrides());
return success();
}
};
} // namespace
/// Patterns that are used to canonicalize the use of unit-extent dims for
/// broadcasting.
void mlir::linalg::populateFoldUnitExtentDimsViaReshapesPatterns(
RewritePatternSet &patterns) {
auto *context = patterns.getContext();
patterns.add<ReplaceUnitExtents>(context,
RankReductionStrategy::ReassociativeReshape);
// TODO: Patterns unrelated to unit dim folding should be factored out.
patterns.add<FoldUnitDimLoops, RankReducedExtractSliceOp,
RankReducedInsertSliceOp<tensor::InsertSliceOp>,
RankReducedInsertSliceOp<tensor::ParallelInsertSliceOp>>(
context);
linalg::FillOp::getCanonicalizationPatterns(patterns, context);
tensor::CollapseShapeOp::getCanonicalizationPatterns(patterns, context);
tensor::EmptyOp::getCanonicalizationPatterns(patterns, context);
tensor::ExpandShapeOp::getCanonicalizationPatterns(patterns, context);
tensor::populateFoldTensorEmptyPatterns(patterns);
memref::populateResolveRankedShapeTypeResultDimsPatterns(patterns);
memref::populateResolveShapedTypeResultDimsPatterns(patterns);
}
void mlir::linalg::populateFoldUnitExtentDimsViaSlicesPatterns(
RewritePatternSet &patterns) {
auto *context = patterns.getContext();
patterns.add<ReplaceUnitExtents>(context,
RankReductionStrategy::ExtractInsertSlice);
patterns.add<FoldUnitDimLoops>(context);
// TODO: Patterns unrelated to unit dim folding should be factored out.
linalg::FillOp::getCanonicalizationPatterns(patterns, context);
tensor::EmptyOp::getCanonicalizationPatterns(patterns, context);
tensor::populateFoldTensorEmptyPatterns(patterns);
memref::populateResolveRankedShapeTypeResultDimsPatterns(patterns);
memref::populateResolveShapedTypeResultDimsPatterns(patterns);
}
void mlir::linalg::populateMoveInitOperandsToInputPattern(
RewritePatternSet &patterns) {
patterns.add<MoveInitOperandsToInput>(patterns.getContext());
}
namespace {
/// Pass that removes unit-extent dims within generic ops.
struct LinalgFoldUnitExtentDimsPass
: public impl::LinalgFoldUnitExtentDimsBase<LinalgFoldUnitExtentDimsPass> {
void runOnOperation() override {
Operation *op = getOperation();
MLIRContext *context = op->getContext();
RewritePatternSet patterns(context);
if (foldOneTripLoopsOnly) {
patterns.add<FoldUnitDimLoops, MoveInitOperandsToInput>(context);
} else if (useRankReducingSlices) {
populateFoldUnitExtentDimsViaSlicesPatterns(patterns);
populateMoveInitOperandsToInputPattern(patterns);
} else {
populateFoldUnitExtentDimsViaReshapesPatterns(patterns);
populateMoveInitOperandsToInputPattern(patterns);
}
(void)applyPatternsAndFoldGreedily(op, std::move(patterns));
}
};
} // namespace
std::unique_ptr<Pass> mlir::createLinalgFoldUnitExtentDimsPass() {
return std::make_unique<LinalgFoldUnitExtentDimsPass>();
}