Files
clang-p2996/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
Hanhan Wang 3ebc6bee6b [mlir][tensor][linalg] Add a pattern that generalizes tensor.unpack op.
The pattern generalizes a tensor::UnPackOp into a sequence of tensor +
Linalg ops, when the outer dims are all 1s. It uses the trick of
rank-reduced tensor.extract_slice to get the tile; transpose the tile;
extract sub tile for incomplete cases if needed; use tensor.insert_slice
to insert it to the destination tensor.

Reviewed By: tyb0807, chelini

Differential Revision: https://reviews.llvm.org/D140254
2022-12-19 17:52:10 -08:00

890 lines
37 KiB
C++

//===- Transforms.cpp - Linalg transformations as patterns ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements logic and helpers to expose Linalg transforms as rewrite
// patterns.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/HoistPadding.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/IR/TensorTilingInterfaceImpl.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <type_traits>
#include <utility>
#define DEBUG_TYPE "linalg-transforms"
using namespace mlir;
using namespace mlir::linalg;
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ")
//===----------------------------------------------------------------------===//
// Transformations exposed as rewrite patterns.
//===----------------------------------------------------------------------===//
LinalgTilingOptions &
mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) {
assert(!tileSizeComputationFunction && "tile sizes already set");
SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end());
tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
OpBuilder::InsertionGuard guard(b);
b.setInsertionPointToStart(
&op->getParentOfType<func::FuncOp>().getBody().front());
return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) {
Value v = b.create<arith::ConstantIndexOp>(op->getLoc(), s);
return v;
}));
};
return *this;
}
/// Pad the `opOperand` in the `paddingDimensions` using the padding value and
/// the nofold flag found in `paddingValues` and `packPaddings`, respectively.
/// Exit early and return the `opOperand` value if the shape dimensions that
/// match `paddingDimensions` have a static size and the nofold flag is not set.
/// Otherwise, try to pad the shape dimensions that match the iterator
/// dimensions `paddingDimensions` and return the tensor::PadOp result if
/// padding succeeds or failure otherwise.
static FailureOr<Value> padOperandToSmallestStaticBoundingBox(
OpBuilder &b, linalg::LinalgOp opToPad, OpOperand *opOperand,
ArrayRef<int64_t> paddingDimensions, ArrayRef<Attribute> paddingValues,
ArrayRef<bool> packPaddings) {
AffineMap indexingMap = opToPad.getMatchingIndexingMap(opOperand);
ArrayRef<int64_t> shape = opToPad.getShape(opOperand);
// Collect the shape dimension that are a function of the `paddingDimensions`.
llvm::SmallDenseSet<int64_t> shapeDimsToPad;
for (int64_t dim : paddingDimensions)
for (const auto &en : enumerate(indexingMap.getResults()))
if (en.value().isFunctionOfDim(dim))
shapeDimsToPad.insert(en.index());
// Return the unpadded operand if padding to a static shape is not needed and
// if the nofold flag is not set.
bool nofold = opOperand->getOperandNumber() < packPaddings.size()
? packPaddings[opOperand->getOperandNumber()]
: false;
bool hasStaticShape = llvm::none_of(shapeDimsToPad, [&](int64_t dim) {
return ShapedType::isDynamic(shape[dim]);
});
if (!nofold && hasStaticShape)
return opOperand->get();
// Fail if `paddingValues` specifies no padding value.
if (opOperand->getOperandNumber() >= paddingValues.size())
return failure();
Attribute paddingAttr = paddingValues[opOperand->getOperandNumber()];
Type paddingType = b.getType<NoneType>();
if (auto typedAttr = paddingAttr.dyn_cast<TypedAttr>())
paddingType = typedAttr.getType();
Value paddingValue =
b.create<arith::ConstantOp>(opToPad.getLoc(), paddingType, paddingAttr);
// Follow the use-def chain if `currOpOperand` is defined by a LinalgOp.
OpOperand *currOpOperand = opOperand;
while (auto linalgOp = currOpOperand->get().getDefiningOp<LinalgOp>()) {
OpResult result = currOpOperand->get().cast<OpResult>();
currOpOperand = linalgOp.getDpsInitOperand(result.getResultNumber());
}
// Fail if `currOpOperand` is not defined by an ExtractSliceOp.
auto sliceOp = currOpOperand->get().getDefiningOp<tensor::ExtractSliceOp>();
if (!sliceOp)
return failure();
// Compute the dropped dimensions if `sliceOp` is ranke-reducing.
llvm::SmallBitVector droppedDims = sliceOp.getDroppedDims();
OffsetSizeAndStrideOpInterface shapedOp = sliceOp;
// Upper bound the `sliceOp` sizes to obtain a static bounding box.
SmallVector<int64_t> paddedShape(shape.begin(), shape.end());
int64_t shapeIdx = 0;
for (const auto &en : enumerate(shapedOp.getMixedSizes())) {
// Skip dropped dimensions.
if (droppedDims.test(en.index()))
continue;
// Skip dimensions that do not require padding.
if (!shapeDimsToPad.contains(shapeIdx)) {
shapeIdx++;
continue;
}
// If the size is an attribute add it directly to `paddedShape`.
if (en.value().is<Attribute>()) {
paddedShape[shapeIdx++] =
en.value().get<Attribute>().dyn_cast<IntegerAttr>().getInt();
continue;
}
// Otherwise, try to compute a constant upper bound for the size value.
FailureOr<int64_t> upperBound =
getConstantUpperBoundForIndex(en.value().get<Value>());
if (failed(upperBound)) {
LLVM_DEBUG(DBGS() << "No constant bounding box can be found for padding");
return failure();
}
paddedShape[shapeIdx++] = *upperBound;
}
assert(shapeIdx == static_cast<int64_t>(shape.size()) &&
"expect the dynamic and static ranks to match");
// Pad the operand to the bounding box defined by `paddedShape`.
auto paddedTensorType = RankedTensorType::get(
paddedShape, getElementTypeOrSelf(opOperand->get()));
return makeComposedPadHighOp(b, opToPad->getLoc(), paddedTensorType,
opOperand->get(), paddingValue, nofold);
}
FailureOr<SmallVector<Value>>
linalg::rewriteAsPaddedOp(OpBuilder &b, LinalgOp opToPad,
ArrayRef<int64_t> paddingDimensions,
ArrayRef<Attribute> paddingValues,
ArrayRef<bool> packPaddings, LinalgOp &paddedOp) {
Location loc = opToPad->getLoc();
// TODO: there are cases where we may still want to pad to larger sizes.
assert(opToPad.hasTensorSemantics() &&
"expected operation to have tensor semantics");
OpBuilder::InsertionGuard g(b);
// Set IP after op because we also take the dims of the original output.
b.setInsertionPointAfter(opToPad);
// Make a copy of the shaped operands and update it.
SmallVector<Value> newOperands;
newOperands.reserve(opToPad->getNumOperands());
for (OpOperand &opOperand : opToPad->getOpOperands()) {
FailureOr<Value> paddedOperand = padOperandToSmallestStaticBoundingBox(
b, opToPad, &opOperand, paddingDimensions, paddingValues, packPaddings);
// Exit if `paddingDimensions` cannot be bounded statically.
if (failed(paddedOperand))
return failure();
newOperands.push_back(*paddedOperand);
}
SmallVector<SmallVector<Value>> reifiedResultShapes;
if (failed(cast<ReifyRankedShapedTypeOpInterface>(opToPad.getOperation())
.reifyResultShapes(b, reifiedResultShapes)))
return failure();
assert(reifiedResultShapes.size() == opToPad->getNumResults() &&
"expected same number of results");
// Clone `opToPad` to operate on the statically padded shapes.
auto resultTensorTypes =
ValueRange(newOperands).take_back(opToPad.getNumDpsInits()).getTypes();
paddedOp = clone(b, opToPad, resultTensorTypes, newOperands);
// Recover the slice out of the new static results. This keeps the original
// linalg op around because it uses the dims of the original results.
SmallVector<Value> paddedSubviewResults;
paddedSubviewResults.reserve(opToPad->getNumResults());
for (const auto &en : llvm::enumerate(paddedOp->getResults())) {
Value paddedResult = en.value();
int64_t resultNumber = en.index();
int64_t rank = paddedResult.getType().cast<RankedTensorType>().getRank();
SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0));
SmallVector<OpFoldResult> sizes;
for (Value v : reifiedResultShapes[resultNumber])
sizes.push_back(getAsOpFoldResult(v));
SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1));
paddedSubviewResults.push_back(b.create<tensor::ExtractSliceOp>(
loc, paddedResult, offsets, sizes, strides));
}
return paddedSubviewResults;
}
/// Try to peel a loop `op` and return the new result.
// TODO: Add support for scf.parallel and affine.for loops.
SmallVector<Value> mlir::linalg::peelLoop(RewriterBase &rewriter,
Operation *op) {
return llvm::TypeSwitch<Operation *, SmallVector<Value, 4>>(op)
.Case<scf::ForOp>([&](scf::ForOp forOp) {
scf::ForOp partialIteration;
if (succeeded(scf::peelAndCanonicalizeForLoop(rewriter, forOp,
partialIteration)))
return partialIteration->getResults();
assert(!partialIteration && "expected that loop was not peeled");
return forOp->getResults();
})
.Default([&](Operation *op) { return op->getResults(); });
}
/// Peel and canonicalize 'loops'.
void mlir::linalg::peelLoops(RewriterBase &rewriter,
ArrayRef<scf::ForOp> loops) {
for (auto loopOp : loops)
peelLoop(rewriter, loopOp);
}
/// Linalg padding pattern.
mlir::linalg::LinalgPaddingPattern::LinalgPaddingPattern(
MLIRContext *context, LinalgPaddingOptions options, PatternBenefit benefit)
: OpInterfaceRewritePattern<LinalgOp>(context, benefit),
options(std::move(options)) {}
FailureOr<LinalgOp>
mlir::linalg::LinalgPaddingPattern::returningMatchAndRewrite(
LinalgOp linalgOp, PatternRewriter &rewriter) const {
if (!linalgOp.hasTensorSemantics())
return failure();
// Pad the operation.
LinalgOp paddedOp;
FailureOr<SmallVector<Value>> newResults =
rewriteAsPaddedOp(rewriter, linalgOp, options.paddingDimensions,
options.paddingValues, options.packPaddings, paddedOp);
if (failed(newResults))
return failure();
// Hoist the padding.
for (const auto &en : enumerate(options.hoistPaddings)) {
if (static_cast<int64_t>(en.index()) >= paddedOp->getNumOperands())
break;
OpOperand &opOperand = paddedOp->getOpOperand(en.index());
auto padOp = opOperand.get().getDefiningOp<tensor::PadOp>();
if (!padOp || en.value() == 0)
continue;
// Fail hoisting if the operand shape is not fully static.
if (llvm::any_of(paddedOp.getShape(&opOperand), ShapedType::isDynamic))
return failure();
tensor::PadOp hoistedOp;
SmallVector<GenericOp> transposeOps;
SmallVector<int64_t> transposeVector =
en.index() < options.transposePaddings.size()
? options.transposePaddings[en.index()]
: SmallVector<int64_t>{};
FailureOr<Value> newResult = hoistPaddingOnTensors(
padOp, en.value(), transposeVector, hoistedOp, transposeOps);
if (failed(newResult))
continue;
rewriter.replaceOp(padOp, *newResult);
}
// Replace the original operation to pad.
rewriter.replaceOp(linalgOp, *newResults);
return paddedOp;
}
LogicalResult mlir::linalg::CopyVectorizationPattern::matchAndRewrite(
memref::CopyOp copyOp, PatternRewriter &rewriter) const {
return vectorizeCopy(rewriter, copyOp);
}
static SmallVector<utils::IteratorType>
getNParallelLoopsAttrs(unsigned nParallelLoops) {
return SmallVector<utils::IteratorType>(nParallelLoops,
utils::IteratorType::parallel);
}
/// Rewrite a tensor::PadOp into a sequence of EmptyOp, FillOp (to
/// initialize with pad_val) and GenericOp (to copy contents).
LogicalResult
PadOpTransformationPattern::matchAndRewrite(tensor::PadOp padOp,
PatternRewriter &rewriter) const {
auto inputShapedType = padOp.getSource().getType().cast<ShapedType>();
auto resultShapedType = padOp.getResult().getType().cast<ShapedType>();
// Bail on non-static shapes.
if (!inputShapedType.hasStaticShape())
return failure();
if (!resultShapedType.hasStaticShape())
return failure();
// Only support padding with a constant for now, i.e. either:
// 1. A BBarg from a different block.
// 2. A value defined outside of the current block.
Block &block = padOp.getRegion().front();
auto yieldOp = cast<tensor::YieldOp>(block.getTerminator());
Value padValue = yieldOp.getValue();
Operation *definingOp = padValue.getDefiningOp();
if (definingOp && definingOp->getBlock() == &block)
return failure();
if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block)
return failure();
// Create tensor with the padded shape
Location loc = padOp.getLoc();
SmallVector<Value> indices(resultShapedType.getRank(),
rewriter.create<arith::ConstantIndexOp>(loc, 0));
Value emptyTensor = rewriter.create<tensor::EmptyOp>(
loc, resultShapedType.getShape(), resultShapedType.getElementType());
// Initialize tensor with the pad value
Value tmpTensor = rewriter
.create<linalg::FillOp>(loc, ValueRange{padValue},
ValueRange{emptyTensor})
.result();
// Copy original contents into new tensor
// Uses linalg.generic, but could be done with tensor.insert_slice
SmallVector<AffineExpr, 4> outputExprs;
for (unsigned i = 0; i < resultShapedType.getRank(); ++i) {
outputExprs.push_back(getAffineDimExpr(i, rewriter.getContext()) +
padOp.getStaticLow()[i]);
}
SmallVector<AffineMap, 2> transferMaps = {
rewriter.getMultiDimIdentityMap(inputShapedType.getRank()),
AffineMap::get(resultShapedType.getRank(),
/*symbolCount=*/0, outputExprs, rewriter.getContext())};
rewriter.replaceOpWithNewOp<linalg::GenericOp>(
padOp, resultShapedType, padOp.getSource(), tmpTensor, transferMaps,
getNParallelLoopsAttrs(resultShapedType.getRank()),
[&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) {
nestedBuilder.create<linalg::YieldOp>(nestedLoc, args[0]);
});
return success();
}
/// Filling `dest` using FillOp constant padding value if possible.
/// Otherwise, generate a tensor::GenerateOp.
Value GeneralizePadOpPattern::createFillOrGenerateOp(
PatternRewriter &rewriter, tensor::PadOp padOp, Value dest,
const SmallVector<Value> &dynSizes) const {
auto padValue = padOp.getConstantPaddingValue();
if (padValue)
return rewriter.create<FillOp>(padOp.getLoc(), padValue, dest).result();
// Fill could not be optimized: Lower to tensor::GenerateOp with region.
auto generateOp = rewriter.create<tensor::GenerateOp>(
padOp.getLoc(), padOp.getResultType(), dynSizes);
// Copy region to new op.
BlockAndValueMapping bvm;
padOp.getRegion().cloneInto(&generateOp.getRegion(), bvm);
return generateOp;
}
LogicalResult
GeneralizePadOpPattern::matchAndRewrite(tensor::PadOp padOp,
PatternRewriter &rewriter) const {
// Given an OpFoldResult, return an index-typed value.
auto getIdxValue = [&](OpFoldResult ofr) {
if (auto val = ofr.dyn_cast<Value>())
return val;
return rewriter
.create<arith::ConstantIndexOp>(
padOp.getLoc(), ofr.get<Attribute>().cast<IntegerAttr>().getInt())
.getResult();
};
auto resultType = padOp.getResultType();
// Compute size of EmptyOp. Any combination of static/dynamic is supported.
SmallVector<Value> dynSizes;
SmallVector<int64_t> staticSizes;
for (unsigned dim = 0; dim < resultType.getRank(); ++dim) {
if (resultType.isDynamicDim(dim)) {
auto srcSize = rewriter.createOrFold<tensor::DimOp>(
padOp.getLoc(), padOp.getSource(), dim);
// Add low and high padding value.
auto plusLow = rewriter.createOrFold<arith::AddIOp>(
padOp.getLoc(), srcSize, getIdxValue(padOp.getMixedLowPad()[dim]));
auto plusHigh = rewriter.createOrFold<arith::AddIOp>(
padOp.getLoc(), plusLow, getIdxValue(padOp.getMixedHighPad()[dim]));
dynSizes.push_back(plusHigh);
}
staticSizes.push_back(resultType.getDimSize(dim));
}
// Init tensor and fill it with padding.
Value emptyTensor = rewriter.create<tensor::EmptyOp>(
padOp.getLoc(), staticSizes, resultType.getElementType(), dynSizes);
Value fill = createFillOrGenerateOp(rewriter, padOp, emptyTensor, dynSizes);
// Try optimize the copy of source.
if (optimizeCopyFn && optimizeCopyFn(rewriter, padOp, fill).succeeded())
return success();
// tensor::PadOps cannot be optimized. Generate a InsertSliceOp instead
// for copying the PadOp source.
auto sourceType = padOp.getSourceType();
// Compute size of source of tensor::PadOp.
SmallVector<OpFoldResult> srcSizes;
for (unsigned dim = 0; dim < sourceType.getRank(); ++dim) {
if (sourceType.isDynamicDim(dim)) {
srcSizes.push_back(rewriter.createOrFold<tensor::DimOp>(
padOp.getLoc(), padOp.getSource(), dim));
} else {
srcSizes.push_back(rewriter.getIndexAttr(sourceType.getDimSize(dim)));
}
}
// Strides of InsertSliceOp are all 1.
SmallVector<OpFoldResult> strides(sourceType.getRank(),
rewriter.getIndexAttr(1));
rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>(
padOp, padOp.getSource(), fill, padOp.getMixedLowPad(), srcSizes,
strides);
return success();
}
LogicalResult ExtractSliceOfPadTensorSwapPattern::matchAndRewrite(
tensor::ExtractSliceOp sliceOp, PatternRewriter &rewriter) const {
if (!sliceOp.hasUnitStride())
return failure();
auto padOp = sliceOp.getSource().getDefiningOp<tensor::PadOp>();
if (!padOp)
return failure();
bool zeroSliceGuard = true;
if (controlFn) {
if (std::optional<bool> control = controlFn(sliceOp))
zeroSliceGuard = *control;
else
return failure();
}
Operation *tiledPadOp =
tensor::bubbleUpPadSlice(rewriter, padOp, sliceOp.getMixedOffsets(),
sliceOp.getMixedSizes(), zeroSliceGuard);
// All shapes are static and the data source is actually used. Rewrite into
// pad(extract_slice(x)).
rewriter.replaceOp(sliceOp, tiledPadOp->getResults());
return success();
}
/// Returns a tensor.pad op if padding value is set. Otherwise, returns the
/// source directly. The method assumes that the `packOp` has static shapes.
static Value getPackOpSourceOrPaddedSource(OpBuilder &builder,
tensor::PackOp packOp) {
Value input = packOp.getSource();
if (!packOp.getPaddingValue()) {
return input;
}
Location loc = packOp.getLoc();
ShapedType inputType = packOp.getSourceType();
int64_t inputRank = inputType.getRank();
assert(llvm::all_of(packOp.getDestType().getShape().take_front(inputRank),
[](int64_t val) { return val == 1; }));
SmallVector<int64_t> paddedShape;
DenseMap<int64_t, OpFoldResult> tileAndPosMapping =
packOp.getDimAndTileMapping();
for (int64_t dim = 0; dim < inputRank; ++dim) {
int64_t size = inputType.getDimSize(dim);
if (!tileAndPosMapping.count(dim)) {
paddedShape.push_back(size);
continue;
}
// The size is less than or equal to tileSize because outer dims are all 1s.
std::optional<int64_t> tileSize =
getConstantIntValue(tileAndPosMapping.lookup(dim));
assert(tileSize.has_value() && "dynamic inner tile size is not supported");
paddedShape.push_back(tileSize.value());
}
auto resultType =
RankedTensorType::get(paddedShape, inputType.getElementType());
return tensor::createPadHighOp(resultType, input, packOp.getPaddingValue(),
/*nofold=*/false, loc, builder);
}
static SmallVector<int64_t>
getPackUnpackNormalizedInnerPerm(int rank, ArrayRef<int64_t> innerDimsPos) {
constexpr int64_t kNonTiledMarker = -1;
SmallVector<int64_t> vec(rank, kNonTiledMarker);
for (auto [index, value] : llvm::enumerate(innerDimsPos))
vec[value] = index;
SmallVector<int64_t> perm = llvm::to_vector(llvm::make_filter_range(
vec, [&](int64_t v) { return v != kNonTiledMarker; }));
return perm;
}
LogicalResult GeneralizeOuterUnitDimsPackOpPattern::matchAndRewrite(
tensor::PackOp packOp, PatternRewriter &rewriter) const {
// TODO: support the case that outer dimensions are not all 1s A
// tensor.expand_shape will be generated in this case.
int64_t srcRank = packOp.getSourceRank();
if (llvm::any_of(packOp.getDestType().getShape().take_front(srcRank),
[](int64_t val) { return val != 1; })) {
return rewriter.notifyMatchFailure(
packOp, "require the outer dimension of the result are all 1s");
}
if (llvm::any_of(packOp.getMixedTiles(),
[](OpFoldResult tile) { return tile.is<Value>(); })) {
return rewriter.notifyMatchFailure(packOp,
"require inner tile sizes being static");
}
// 1. Use rank-reduced tensor.extract_slice op to extract the tile.
Location loc = packOp.getLoc();
Attribute zeroIdxAttr = rewriter.getIndexAttr(0);
Attribute oneIdxAttr = rewriter.getIndexAttr(1);
SmallVector<OpFoldResult> readOffsets(srcRank, zeroIdxAttr);
SmallVector<OpFoldResult> readStrides(srcRank, oneIdxAttr);
SmallVector<OpFoldResult> readSizes;
SmallVector<int64_t> readShape;
DenseMap<int64_t, OpFoldResult> dimAndTileMapping =
packOp.getDimAndTileMapping();
for (auto i : llvm::seq<unsigned>(0, srcRank)) {
if (!dimAndTileMapping.count(i)) {
readSizes.push_back(oneIdxAttr);
continue;
}
readSizes.push_back(dimAndTileMapping[i]);
readShape.push_back(getConstantIntValue(dimAndTileMapping[i])
.value_or(ShapedType::kDynamic));
}
Type elemType = packOp.getSourceType().getElementType();
auto readType = RankedTensorType::get(readShape, elemType);
Value input = getPackOpSourceOrPaddedSource(rewriter, packOp);
Value tile = rewriter.create<tensor::ExtractSliceOp>(
loc, readType, input, readOffsets, readSizes, readStrides);
// 2. Transpose the tile to match the inner tile order.
SmallVector<int64_t> perm =
getPackUnpackNormalizedInnerPerm(srcRank, packOp.getInnerDimsPos());
SmallVector<int64_t> transpShape = readShape;
applyPermutationToVector<int64_t>(transpShape, perm);
Value empty = rewriter.create<tensor::EmptyOp>(loc, transpShape, elemType);
auto transposedOp =
rewriter.create<linalg::TransposeOp>(loc, tile, empty, perm);
// 3. Insert the inner tile to the destination.
int64_t destRank = packOp.getDestRank();
SmallVector<OpFoldResult> writeStrides(destRank, oneIdxAttr);
SmallVector<OpFoldResult> writeOffsets(destRank, zeroIdxAttr);
SmallVector<OpFoldResult> writeSizes(srcRank, oneIdxAttr);
for (auto size : transpShape)
writeSizes.push_back(rewriter.getIndexAttr(size));
auto insert = rewriter.create<tensor::InsertSliceOp>(
loc, transposedOp.getResult()[0], packOp.getDest(), writeOffsets,
writeSizes, writeStrides);
rewriter.replaceOp(packOp, insert.getResult());
return success();
}
LogicalResult GeneralizeOuterUnitDimsUnPackOpPattern::matchAndRewrite(
tensor::UnPackOp unpackOp, PatternRewriter &rewriter) const {
int64_t srcRank = unpackOp.getSourceRank();
int64_t destRank = unpackOp.getDestRank();
ArrayRef<int64_t> srcShape = unpackOp.getSourceType().getShape();
if (llvm::any_of(srcShape.take_front(destRank),
[](int64_t val) { return val != 1; })) {
return rewriter.notifyMatchFailure(
unpackOp, "require the outer dimension of the result are all 1s");
}
// 1. Use rank-reduced tensor.extract_slice op to extract the tile.
Location loc = unpackOp.getLoc();
Attribute zeroIdxAttr = rewriter.getIndexAttr(0);
Attribute oneIdxAttr = rewriter.getIndexAttr(1);
SmallVector<OpFoldResult> readOffsets(srcRank, zeroIdxAttr);
SmallVector<OpFoldResult> readStrides(srcRank, oneIdxAttr);
auto mixedTiles = unpackOp.getMixedTiles();
SmallVector<OpFoldResult> readSizes(destRank, oneIdxAttr);
readSizes.append(mixedTiles.begin(), mixedTiles.end());
// Explicitly create the type for extract_slice op because the inner tile
// size could be 1. We want to represent the whole inner tile in this case.
ArrayRef<int64_t> readShape = srcShape.drop_front(destRank);
Type elemType = unpackOp.getSourceType().getElementType();
auto readType = RankedTensorType::get(readShape, elemType);
Value innerTile = rewriter.create<tensor::ExtractSliceOp>(
loc, readType, unpackOp.getSource(), readOffsets, readSizes, readStrides);
// 2. Transpose the tile to match the outer corresponding tile order.
ArrayRef<int64_t> innerDimsPos = unpackOp.getInnerDimsPos();
SmallVector<int64_t> perm =
getPackUnpackNormalizedInnerPerm(srcRank, innerDimsPos);
SmallVector<int64_t> transpShape(readShape);
applyPermutationToVector<int64_t>(transpShape, perm);
Value empty = rewriter.create<tensor::EmptyOp>(loc, transpShape, elemType);
auto transposedOp =
rewriter.create<linalg::TransposeOp>(loc, innerTile, empty, perm);
// 3. Handle in-complete tiles if needed. It truncates trailing data from the
// transposed tile.
int numLoops = transpShape.size();
SmallVector<OpFoldResult> tileStrides(numLoops, oneIdxAttr);
SmallVector<OpFoldResult> tileOffsets(numLoops, zeroIdxAttr);
SmallVector<OpFoldResult> tileSizes;
for (int dim : innerDimsPos)
tileSizes.push_back(getAsOpFoldResult(
rewriter.createOrFold<tensor::DimOp>(loc, unpackOp.getDest(), dim)));
applyPermutationToVector<OpFoldResult>(tileSizes, perm);
auto partialTile = rewriter.create<tensor::ExtractSliceOp>(
loc, transposedOp.getResult()[0], tileOffsets, tileSizes, tileStrides);
// 4. Insert the result to the destination tensor.
SmallVector<OpFoldResult> writeSizes;
SmallVector<OpFoldResult> writeStrides(destRank, oneIdxAttr);
SmallVector<OpFoldResult> writeOffsets(destRank, zeroIdxAttr);
DenseMap<int64_t, OpFoldResult> dimAndTileMapping =
unpackOp.getDimAndTileMapping();
for (int i = 0, idx = 0; i < destRank; ++i) {
if (dimAndTileMapping.count(i))
writeSizes.push_back(tileSizes[idx++]);
else
writeSizes.push_back(oneIdxAttr);
}
auto insert = rewriter.create<tensor::InsertSliceOp>(
loc, partialTile, unpackOp.getDest(), writeOffsets, writeSizes,
writeStrides);
rewriter.replaceOp(unpackOp, insert.getResult());
return success();
}
// The following are patterns for downscaling convolution ops with size-1
// window dimensions.
//
// Note that we'd eventually want to write such transformations in a generic
// way, e.g., converting to linalg.generic, removing the size-1 dimensions,
// and then turning back to named ops. But for now it's fine to have a few
// patterns matching special ops to get started.
template <typename Conv2DOp, typename Conv1DOp>
FailureOr<Conv1DOp> DownscaleSizeOneWindowed2DConvolution<Conv2DOp, Conv1DOp>::
returningMatchAndRewrite(Conv2DOp convOp, PatternRewriter &rewriter) const {
if (convOp.hasBufferSemantics())
return failure(); // To be implemented.
Value input = convOp.getInputs().front();
Value kernel = convOp.getInputs().back();
Value output = convOp.getOutputs().front();
auto inputType = input.getType().dyn_cast<RankedTensorType>();
auto kernelType = kernel.getType().dyn_cast<RankedTensorType>();
auto outputType = output.getType().dyn_cast<RankedTensorType>();
auto kernelShape = kernelType.getShape();
auto outputShape = outputType.getShape();
// Get domain indices based on conv2D layout.
auto [khIndex, kwIndex, ohIndex, owIndex] =
TypeSwitch<Operation *, std::tuple<int64_t, int64_t, int64_t,
int64_t>>(convOp)
.Case([&](linalg::Conv2DNhwcHwcfOp op) {
return std::make_tuple(0, 1, 1, 2);
})
.Case([&](linalg::Conv2DNchwFchwOp op) {
return std::make_tuple(2, 3, 2, 3);
})
.Case([&](linalg::PoolingNhwcSumOp op) {
return std::make_tuple(0, 1, 1, 2);
})
.Case([&](linalg::PoolingNchwSumOp op) {
return std::make_tuple(0, 1, 2, 3);
})
.Case([&](linalg::PoolingNhwcMaxOp op) {
return std::make_tuple(0, 1, 1, 2);
})
.Case([&](linalg::PoolingNhwcMaxUnsignedOp op) {
return std::make_tuple(0, 1, 1, 2);
})
.Case([&](linalg::PoolingNhwcMinOp op) {
return std::make_tuple(0, 1, 1, 2);
})
.Case([&](linalg::PoolingNhwcMinUnsignedOp op) {
return std::make_tuple(0, 1, 1, 2);
})
.Case([&](linalg::PoolingNchwMaxOp op) {
return std::make_tuple(0, 1, 2, 3);
})
.Default([&](Operation *op) {
llvm_unreachable("unexpected conv2d/pool2d operation.");
return std::make_tuple(0, 0, 0, 0);
});
// Only handle the case where at least one of the window dimensions is
// of size 1. Other cases can rely on tiling to reduce to such cases.
int64_t khSize = kernelShape[khIndex], kwSize = kernelShape[kwIndex];
int64_t ohSize = outputShape[ohIndex], owSize = outputShape[owIndex];
bool removeH = (khSize == 1 && ohSize == 1);
bool removeW = (kwSize == 1 && owSize == 1);
if (!removeH && !removeW)
return failure();
// Get new shapes and types for all operands by removing the size-1
// dimension.
using RTTBuilder = RankedTensorType::Builder;
RankedTensorType newInputType =
RTTBuilder(inputType).dropDim((removeH ? ohIndex : owIndex));
RankedTensorType newKernelType =
RTTBuilder(kernelType).dropDim((removeH ? khIndex : kwIndex));
RankedTensorType newOutputType =
RTTBuilder(outputType).dropDim((removeH ? ohIndex : owIndex));
// Rank-reduce operands.
Location loc = convOp.getLoc();
Value newInput = tensor::createCanonicalRankReducingExtractSliceOp(
rewriter, loc, input, newInputType);
Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp(
rewriter, loc, kernel, newKernelType);
Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp(
rewriter, loc, output, newOutputType);
// Rank-reduce strides and dilations too.
// TODO: dropDim 1-liner helper.
auto strides =
llvm::to_vector<4>(convOp.getStrides().template getValues<int64_t>());
strides.erase(strides.begin() + (removeH ? 0 : 1));
auto stridesAttr = rewriter.getI64VectorAttr(strides);
auto dilations =
llvm::to_vector<4>(convOp.getDilations().template getValues<int64_t>());
dilations.erase(dilations.begin() + (removeH ? 0 : 1));
auto dilationsAttr = rewriter.getI64VectorAttr(dilations);
auto conv1DOp = rewriter.create<Conv1DOp>(
loc, newOutputType, ValueRange{newInput, newKernel},
ValueRange{newOutput}, stridesAttr, dilationsAttr);
// Insert back.
Value inserted = tensor::createCanonicalRankReducingInsertSliceOp(
rewriter, loc, conv1DOp.getResult(0), output);
rewriter.replaceOp(convOp, inserted);
return conv1DOp;
}
template struct linalg::DownscaleSizeOneWindowed2DConvolution<Conv2DNhwcHwcfOp,
Conv1DNwcWcfOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<Conv2DNchwFchwOp,
Conv1DNcwFcwOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<PoolingNhwcSumOp,
PoolingNwcSumOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<PoolingNchwSumOp,
PoolingNcwSumOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMaxOp,
PoolingNwcMaxOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<
PoolingNhwcMaxUnsignedOp, PoolingNwcMaxUnsignedOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMinOp,
PoolingNwcMinOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<
PoolingNhwcMinUnsignedOp, PoolingNwcMinUnsignedOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<PoolingNchwMaxOp,
PoolingNcwMaxOp>;
FailureOr<DepthwiseConv1DNwcWcOp>
DownscaleDepthwiseConv2DNhwcHwcOp::returningMatchAndRewrite(
DepthwiseConv2DNhwcHwcOp convOp, PatternRewriter &rewriter) const {
if (convOp.hasBufferSemantics())
return failure(); // To be implemented.
Value input = convOp.getInputs().front();
Value kernel = convOp.getInputs().back();
Value output = convOp.getOutputs().front();
auto inputType = input.getType().dyn_cast<RankedTensorType>();
auto kernelType = kernel.getType().dyn_cast<RankedTensorType>();
auto outputType = output.getType().dyn_cast<RankedTensorType>();
auto kernelShape = kernelType.getShape();
auto outputShape = outputType.getShape();
// Only handle the case where at least one of the window dimensions is
// of size 1. Other cases can rely on tiling to reduce to such cases.
int64_t khSize = kernelShape[0], kwSize = kernelShape[1];
int64_t ohSize = outputShape[1], owSize = outputShape[2];
bool removeH = (khSize == 1 && ohSize == 1);
bool removeW = (kwSize == 1 && owSize == 1);
if (!removeH && !removeW)
return failure();
// Get new shapes and types for all operands by removing the size-1
// dimension.
using RTTBuilder = RankedTensorType::Builder;
RankedTensorType newInputType =
RTTBuilder(inputType).dropDim((removeH ? 1 : 2));
RankedTensorType newKernelType =
RTTBuilder(kernelType).dropDim((removeH ? 0 : 1));
RankedTensorType newOutputType =
RTTBuilder(outputType).dropDim(removeH ? 1 : 2);
// Rank-reduce operands.
Location loc = convOp.getLoc();
Value newInput = tensor::createCanonicalRankReducingExtractSliceOp(
rewriter, loc, input, newInputType);
Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp(
rewriter, loc, kernel, newKernelType);
Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp(
rewriter, loc, output, newOutputType);
// Rank-reduce strides and dilations too.
// TODO: dropDim 1-liner helper.
auto strides = llvm::to_vector<4>(convOp.getStrides().getValues<int64_t>());
strides.erase(strides.begin() + (removeH ? 0 : 1));
auto stridesAttr = rewriter.getI64VectorAttr(strides);
auto dilations =
llvm::to_vector<4>(convOp.getDilations().getValues<int64_t>());
dilations.erase(dilations.begin() + (removeH ? 0 : 1));
auto dilationsAttr = rewriter.getI64VectorAttr(dilations);
auto conv1DOp = rewriter.create<DepthwiseConv1DNwcWcOp>(
loc, newOutputType, ValueRange{newInput, newKernel},
ValueRange{newOutput}, stridesAttr, dilationsAttr);
// Insert back.
Value inserted = tensor::createCanonicalRankReducingInsertSliceOp(
rewriter, loc, conv1DOp.getResult(0), output);
rewriter.replaceOp(convOp, inserted);
return conv1DOp;
}
void linalg::populateDecomposeConvolutionPatterns(RewritePatternSet &patterns,
PatternBenefit benefit) {
patterns.add<DownscaleSizeOneWindowed2DConvolution<linalg::Conv2DNhwcHwcfOp,
Conv1DNwcWcfOp>,
DownscaleSizeOneWindowed2DConvolution<linalg::Conv2DNchwFchwOp,
Conv1DNcwFcwOp>,
DownscaleDepthwiseConv2DNhwcHwcOp>(patterns.getContext(),
benefit);
patterns.add<
DownscaleSizeOneWindowed2DConvolution<PoolingNhwcSumOp, PoolingNwcSumOp>,
DownscaleSizeOneWindowed2DConvolution<PoolingNchwSumOp, PoolingNcwSumOp>,
DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMaxOp, PoolingNwcMaxOp>,
DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMaxUnsignedOp,
PoolingNwcMaxUnsignedOp>,
DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMinOp, PoolingNwcMinOp>,
DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMinUnsignedOp,
PoolingNwcMinUnsignedOp>,
DownscaleSizeOneWindowed2DConvolution<PoolingNchwMaxOp, PoolingNcwMaxOp>>(
patterns.getContext(), benefit);
}