Files
clang-p2996/mlir/lib/Dialect/MemRef/Transforms/ExpandStridedMetadata.cpp
Quentin Colombet 64f99842a6 [mlir][ExpandStridedMetadata] Handle collapse_shape of dim of size 1 gracefully
Collapsing dimensions of size 1 with random strides (a.k.a.
non-contiguous w.r.t. collapsed dimensions) is a grey area that we'd
like to clean-up. (See https://reviews.llvm.org/D136483#3909856)

That said, the implementation in `memref-to-llvm` currently skips
dimensions of size 1 when computing the stride of a group.

While longer term we may want to clean that up, for now matches this
behavior, at least in the static case.

For the dynamic case, for this patch we stick to `min(group strides)`.
However, if we want to handle the dynamic cases correctly while allowing
non-truly-contiguous dynamic size of 1, we would need to `if-then-else`
every dynamic size. In other words `min(stride_i, for all i in group and
dim_i != 1)`.

I didn't implement that in this patch at the moment since
`memref-to-llvm` is technically broken in the general case for this. (It
currently would only produce something sensible for row major tensors.)

Differential Revision: https://reviews.llvm.org/D139329
2022-12-08 07:32:01 +00:00

790 lines
32 KiB
C++

//===- ExpandStridedMetadata.cpp - Simplify this operation -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// The pass expands memref operations that modify the metadata of a memref
/// (sizes, offset, strides) into a sequence of easier to analyze constructs.
/// In particular, this pass transforms operations into explicit sequence of
/// operations that model the effect of this operation on the different
/// metadata. This pass uses affine constructs to materialize these effects.
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/MemRef/Transforms/Passes.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
namespace mlir {
namespace memref {
#define GEN_PASS_DEF_EXPANDSTRIDEDMETADATA
#include "mlir/Dialect/MemRef/Transforms/Passes.h.inc"
} // namespace memref
} // namespace mlir
using namespace mlir;
namespace {
/// Replace `dst = subview(memref, subOffset, subSizes, subStrides))`
/// With
///
/// \verbatim
/// baseBuffer, baseOffset, baseSizes, baseStrides =
/// extract_strided_metadata(memref)
/// strides#i = baseStrides#i * subSizes#i
/// offset = baseOffset + sum(subOffset#i * baseStrides#i)
/// sizes = subSizes
/// dst = reinterpret_cast baseBuffer, offset, sizes, strides
/// \endverbatim
///
/// In other words, get rid of the subview in that expression and canonicalize
/// on its effects on the offset, the sizes, and the strides using affine.apply.
struct SubviewFolder : public OpRewritePattern<memref::SubViewOp> {
public:
using OpRewritePattern<memref::SubViewOp>::OpRewritePattern;
LogicalResult matchAndRewrite(memref::SubViewOp subview,
PatternRewriter &rewriter) const override {
// Build a plain extract_strided_metadata(memref) from subview(memref).
Location origLoc = subview.getLoc();
Value source = subview.getSource();
auto sourceType = source.getType().cast<MemRefType>();
unsigned sourceRank = sourceType.getRank();
auto newExtractStridedMetadata =
rewriter.create<memref::ExtractStridedMetadataOp>(origLoc, source);
auto [sourceStrides, sourceOffset] = getStridesAndOffset(sourceType);
// Compute the new strides and offset from the base strides and offset:
// newStride#i = baseStride#i * subStride#i
// offset = baseOffset + sum(subOffsets#i * newStrides#i)
SmallVector<OpFoldResult> strides;
SmallVector<OpFoldResult> subStrides = subview.getMixedStrides();
auto origStrides = newExtractStridedMetadata.getStrides();
// Hold the affine symbols and values for the computation of the offset.
SmallVector<OpFoldResult> values(2 * sourceRank + 1);
SmallVector<AffineExpr> symbols(2 * sourceRank + 1);
detail::bindSymbolsList(rewriter.getContext(), symbols);
AffineExpr expr = symbols.front();
values[0] = ShapedType::isDynamic(sourceOffset)
? getAsOpFoldResult(newExtractStridedMetadata.getOffset())
: rewriter.getIndexAttr(sourceOffset);
SmallVector<OpFoldResult> subOffsets = subview.getMixedOffsets();
AffineExpr s0 = rewriter.getAffineSymbolExpr(0);
AffineExpr s1 = rewriter.getAffineSymbolExpr(1);
for (unsigned i = 0; i < sourceRank; ++i) {
// Compute the stride.
OpFoldResult origStride =
ShapedType::isDynamic(sourceStrides[i])
? origStrides[i]
: OpFoldResult(rewriter.getIndexAttr(sourceStrides[i]));
strides.push_back(makeComposedFoldedAffineApply(
rewriter, origLoc, s0 * s1, {subStrides[i], origStride}));
// Build up the computation of the offset.
unsigned baseIdxForDim = 1 + 2 * i;
unsigned subOffsetForDim = baseIdxForDim;
unsigned origStrideForDim = baseIdxForDim + 1;
expr = expr + symbols[subOffsetForDim] * symbols[origStrideForDim];
values[subOffsetForDim] = subOffsets[i];
values[origStrideForDim] = origStride;
}
// Compute the offset.
OpFoldResult finalOffset =
makeComposedFoldedAffineApply(rewriter, origLoc, expr, values);
// The final result is <baseBuffer, offset, sizes, strides>.
// Thus we need 1 + 1 + subview.getRank() + subview.getRank(), to hold all
// the values.
auto subType = subview.getType().cast<MemRefType>();
unsigned subRank = subType.getRank();
// The sizes of the final type are defined directly by the input sizes of
// the subview.
// Moreover subviews can drop some dimensions, some strides and sizes may
// not end up in the final <base, offset, sizes, strides> value that we are
// replacing.
// Do the filtering here.
SmallVector<OpFoldResult> subSizes = subview.getMixedSizes();
llvm::SmallBitVector droppedDims = subview.getDroppedDims();
SmallVector<OpFoldResult> finalSizes;
finalSizes.reserve(subRank);
SmallVector<OpFoldResult> finalStrides;
finalStrides.reserve(subRank);
for (unsigned i = 0; i < sourceRank; ++i) {
if (droppedDims.test(i))
continue;
finalSizes.push_back(subSizes[i]);
finalStrides.push_back(strides[i]);
}
assert(finalSizes.size() == subRank &&
"Should have populated all the values at this point");
auto memrefDesc = rewriter.create<memref::ReinterpretCastOp>(
origLoc, subType, newExtractStridedMetadata.getBaseBuffer(),
finalOffset,
/*sizes=*/finalSizes,
/*strides=*/finalStrides);
rewriter.replaceOp(subview, memrefDesc.getResult());
return success();
}
};
/// Compute the expanded sizes of the given \p expandShape for the
/// \p groupId-th reassociation group.
/// \p origSizes hold the sizes of the source shape as values.
/// This is used to compute the new sizes in cases of dynamic shapes.
///
/// sizes#i =
/// baseSizes#groupId / product(expandShapeSizes#j,
/// for j in group excluding reassIdx#i)
/// Where reassIdx#i is the reassociation index at index i in \p groupId.
///
/// \post result.size() == expandShape.getReassociationIndices()[groupId].size()
///
/// TODO: Move this utility function directly within ExpandShapeOp. For now,
/// this is not possible because this function uses the Affine dialect and the
/// MemRef dialect cannot depend on the Affine dialect.
static SmallVector<OpFoldResult>
getExpandedSizes(memref::ExpandShapeOp expandShape, OpBuilder &builder,
ArrayRef<OpFoldResult> origSizes, unsigned groupId) {
SmallVector<int64_t, 2> reassocGroup =
expandShape.getReassociationIndices()[groupId];
assert(!reassocGroup.empty() &&
"Reassociation group should have at least one dimension");
unsigned groupSize = reassocGroup.size();
SmallVector<OpFoldResult> expandedSizes(groupSize);
uint64_t productOfAllStaticSizes = 1;
Optional<unsigned> dynSizeIdx;
MemRefType expandShapeType = expandShape.getResultType();
// Fill up all the statically known sizes.
for (unsigned i = 0; i < groupSize; ++i) {
uint64_t dimSize = expandShapeType.getDimSize(reassocGroup[i]);
if (ShapedType::isDynamic(dimSize)) {
assert(!dynSizeIdx && "There must be at most one dynamic size per group");
dynSizeIdx = i;
continue;
}
productOfAllStaticSizes *= dimSize;
expandedSizes[i] = builder.getIndexAttr(dimSize);
}
// Compute the dynamic size using the original size and all the other known
// static sizes:
// expandSize = origSize / productOfAllStaticSizes.
if (dynSizeIdx) {
AffineExpr s0 = builder.getAffineSymbolExpr(0);
expandedSizes[*dynSizeIdx] = makeComposedFoldedAffineApply(
builder, expandShape.getLoc(), s0.floorDiv(productOfAllStaticSizes),
origSizes[groupId]);
}
return expandedSizes;
}
/// Compute the expanded strides of the given \p expandShape for the
/// \p groupId-th reassociation group.
/// \p origStrides and \p origSizes hold respectively the strides and sizes
/// of the source shape as values.
/// This is used to compute the strides in cases of dynamic shapes and/or
/// dynamic stride for this reassociation group.
///
/// strides#i =
/// origStrides#reassDim * product(expandShapeSizes#j, for j in
/// reassIdx#i+1..reassIdx#i+group.size-1)
///
/// Where reassIdx#i is the reassociation index for at index i in \p groupId
/// and expandShapeSizes#j is either:
/// - The constant size at dimension j, derived directly from the result type of
/// the expand_shape op, or
/// - An affine expression: baseSizes#reassDim / product of all constant sizes
/// in expandShapeSizes. (Remember expandShapeSizes has at most one dynamic
/// element.)
///
/// \post result.size() == expandShape.getReassociationIndices()[groupId].size()
///
/// TODO: Move this utility function directly within ExpandShapeOp. For now,
/// this is not possible because this function uses the Affine dialect and the
/// MemRef dialect cannot depend on the Affine dialect.
SmallVector<OpFoldResult> getExpandedStrides(memref::ExpandShapeOp expandShape,
OpBuilder &builder,
ArrayRef<OpFoldResult> origSizes,
ArrayRef<OpFoldResult> origStrides,
unsigned groupId) {
SmallVector<int64_t, 2> reassocGroup =
expandShape.getReassociationIndices()[groupId];
assert(!reassocGroup.empty() &&
"Reassociation group should have at least one dimension");
unsigned groupSize = reassocGroup.size();
MemRefType expandShapeType = expandShape.getResultType();
Optional<int64_t> dynSizeIdx;
// Fill up the expanded strides, with the information we can deduce from the
// resulting shape.
uint64_t currentStride = 1;
SmallVector<OpFoldResult> expandedStrides(groupSize);
for (int i = groupSize - 1; i >= 0; --i) {
expandedStrides[i] = builder.getIndexAttr(currentStride);
uint64_t dimSize = expandShapeType.getDimSize(reassocGroup[i]);
if (ShapedType::isDynamic(dimSize)) {
assert(!dynSizeIdx && "There must be at most one dynamic size per group");
dynSizeIdx = i;
continue;
}
currentStride *= dimSize;
}
// Collect the statically known information about the original stride.
Value source = expandShape.getSrc();
auto sourceType = source.getType().cast<MemRefType>();
auto [strides, offset] = getStridesAndOffset(sourceType);
OpFoldResult origStride =
ShapedType::isDynamic(strides[groupId])
? origStrides[groupId]
: builder.getIndexAttr(strides[groupId]);
// Apply the original stride to all the strides.
int64_t doneStrideIdx = 0;
// If we saw a dynamic dimension, we need to fix-up all the strides up to
// that dimension with the dynamic size.
if (dynSizeIdx) {
int64_t productOfAllStaticSizes = currentStride;
assert(ShapedType::isDynamic(sourceType.getDimSize(groupId)) &&
"We shouldn't be able to change dynamicity");
OpFoldResult origSize = origSizes[groupId];
AffineExpr s0 = builder.getAffineSymbolExpr(0);
AffineExpr s1 = builder.getAffineSymbolExpr(1);
for (; doneStrideIdx < *dynSizeIdx; ++doneStrideIdx) {
int64_t baseExpandedStride = expandedStrides[doneStrideIdx]
.get<Attribute>()
.cast<IntegerAttr>()
.getInt();
expandedStrides[doneStrideIdx] = makeComposedFoldedAffineApply(
builder, expandShape.getLoc(),
(s0 * baseExpandedStride).floorDiv(productOfAllStaticSizes) * s1,
{origSize, origStride});
}
}
// Now apply the origStride to the remaining dimensions.
AffineExpr s0 = builder.getAffineSymbolExpr(0);
for (; doneStrideIdx < groupSize; ++doneStrideIdx) {
int64_t baseExpandedStride = expandedStrides[doneStrideIdx]
.get<Attribute>()
.cast<IntegerAttr>()
.getInt();
expandedStrides[doneStrideIdx] = makeComposedFoldedAffineApply(
builder, expandShape.getLoc(), s0 * baseExpandedStride, {origStride});
}
return expandedStrides;
}
/// Produce an OpFoldResult object with \p builder at \p loc representing
/// `prod(valueOrConstant#i, for i in {indices})`,
/// where valueOrConstant#i is maybeConstant[i] when \p isDymamic is false,
/// values[i] otherwise.
///
/// \pre for all index in indices: index < values.size()
/// \pre for all index in indices: index < maybeConstants.size()
static OpFoldResult
getProductOfValues(ArrayRef<int64_t> indices, OpBuilder &builder, Location loc,
ArrayRef<int64_t> maybeConstants,
ArrayRef<OpFoldResult> values,
llvm::function_ref<bool(int64_t)> isDynamic) {
AffineExpr productOfValues = builder.getAffineConstantExpr(1);
SmallVector<OpFoldResult> inputValues;
unsigned numberOfSymbols = 0;
unsigned groupSize = indices.size();
for (unsigned i = 0; i < groupSize; ++i) {
productOfValues =
productOfValues * builder.getAffineSymbolExpr(numberOfSymbols++);
unsigned srcIdx = indices[i];
int64_t maybeConstant = maybeConstants[srcIdx];
inputValues.push_back(isDynamic(maybeConstant)
? values[srcIdx]
: builder.getIndexAttr(maybeConstant));
}
return makeComposedFoldedAffineApply(builder, loc, productOfValues,
inputValues);
}
/// Compute the collapsed size of the given \p collpaseShape for the
/// \p groupId-th reassociation group.
/// \p origSizes hold the sizes of the source shape as values.
/// This is used to compute the new sizes in cases of dynamic shapes.
///
/// Conceptually this helper function computes:
/// `prod(origSizes#i, for i in {ressociationGroup[groupId]})`.
///
/// \post result.size() == 1, in other words, each group collapse to one
/// dimension.
///
/// TODO: Move this utility function directly within CollapseShapeOp. For now,
/// this is not possible because this function uses the Affine dialect and the
/// MemRef dialect cannot depend on the Affine dialect.
static SmallVector<OpFoldResult>
getCollapsedSize(memref::CollapseShapeOp collapseShape, OpBuilder &builder,
ArrayRef<OpFoldResult> origSizes, unsigned groupId) {
SmallVector<OpFoldResult> collapsedSize;
MemRefType collapseShapeType = collapseShape.getResultType();
uint64_t size = collapseShapeType.getDimSize(groupId);
if (!ShapedType::isDynamic(size)) {
collapsedSize.push_back(builder.getIndexAttr(size));
return collapsedSize;
}
// We are dealing with a dynamic size.
// Build the affine expr of the product of the original sizes involved in that
// group.
Value source = collapseShape.getSrc();
auto sourceType = source.getType().cast<MemRefType>();
SmallVector<int64_t, 2> reassocGroup =
collapseShape.getReassociationIndices()[groupId];
collapsedSize.push_back(getProductOfValues(
reassocGroup, builder, collapseShape.getLoc(), sourceType.getShape(),
origSizes, ShapedType::isDynamic));
return collapsedSize;
}
/// Compute the collapsed stride of the given \p collpaseShape for the
/// \p groupId-th reassociation group.
/// \p origStrides and \p origSizes hold respectively the strides and sizes
/// of the source shape as values.
/// This is used to compute the strides in cases of dynamic shapes and/or
/// dynamic stride for this reassociation group.
///
/// Conceptually this helper function returns the stride of the inner most
/// dimension of that group in the original shape.
///
/// \post result.size() == 1, in other words, each group collapse to one
/// dimension.
static SmallVector<OpFoldResult>
getCollapsedStride(memref::CollapseShapeOp collapseShape, OpBuilder &builder,
ArrayRef<OpFoldResult> origSizes,
ArrayRef<OpFoldResult> origStrides, unsigned groupId) {
SmallVector<int64_t, 2> reassocGroup =
collapseShape.getReassociationIndices()[groupId];
assert(!reassocGroup.empty() &&
"Reassociation group should have at least one dimension");
Value source = collapseShape.getSrc();
auto sourceType = source.getType().cast<MemRefType>();
auto [strides, offset] = getStridesAndOffset(sourceType);
SmallVector<OpFoldResult> groupStrides;
ArrayRef<int64_t> srcShape = sourceType.getShape();
for (int64_t currentDim : reassocGroup) {
// Skip size-of-1 dimensions, since right now their strides may be
// meaningless.
// FIXME: size-of-1 dimensions shouldn't be used in collapse shape, unless
// they are truly contiguous. When they are truly contiguous, we shouldn't
// need to skip them.
if (srcShape[currentDim] == 1)
continue;
int64_t currentStride = strides[currentDim];
groupStrides.push_back(ShapedType::isDynamic(currentStride)
? origStrides[currentDim]
: builder.getIndexAttr(currentStride));
}
if (groupStrides.empty()) {
// We're dealing with a 1x1x...x1 shape. The stride is meaningless,
// but we still have to make the type system happy.
MemRefType collapsedType = collapseShape.getResultType();
auto [collapsedStrides, collapsedOffset] =
getStridesAndOffset(collapsedType);
int64_t finalStride = collapsedStrides[groupId];
if (ShapedType::isDynamic(finalStride)) {
// Look for a dynamic stride. At this point we don't know which one is
// desired, but they are all equally good/bad.
for (int64_t currentDim : reassocGroup) {
assert(srcShape[currentDim] == 1 &&
"We should be dealing with 1x1x...x1");
if (ShapedType::isDynamic(strides[currentDim]))
return {origStrides[currentDim]};
}
llvm_unreachable("We should have found a dynamic stride");
}
return {builder.getIndexAttr(finalStride)};
}
// For the general case, we just want the minimum stride
// since the collapsed dimensions are contiguous.
auto minMap = AffineMap::getMultiDimIdentityMap(groupStrides.size(),
builder.getContext());
return {makeComposedFoldedAffineMin(builder, collapseShape.getLoc(), minMap,
groupStrides)};
}
/// Replace `baseBuffer, offset, sizes, strides =
/// extract_strided_metadata(reshapeLike(memref))`
/// With
///
/// \verbatim
/// baseBuffer, offset, baseSizes, baseStrides =
/// extract_strided_metadata(memref)
/// sizes = getReshapedSizes(reshapeLike)
/// strides = getReshapedStrides(reshapeLike)
/// \endverbatim
///
///
/// Notice that `baseBuffer` and `offset` are unchanged.
///
/// In other words, get rid of the expand_shape in that expression and
/// materialize its effects on the sizes and the strides using affine apply.
template <typename ReassociativeReshapeLikeOp,
SmallVector<OpFoldResult> (*getReshapedSizes)(
ReassociativeReshapeLikeOp, OpBuilder &,
ArrayRef<OpFoldResult> /*origSizes*/, unsigned /*groupId*/),
SmallVector<OpFoldResult> (*getReshapedStrides)(
ReassociativeReshapeLikeOp, OpBuilder &,
ArrayRef<OpFoldResult> /*origSizes*/,
ArrayRef<OpFoldResult> /*origStrides*/, unsigned /*groupId*/)>
struct ReshapeFolder : public OpRewritePattern<ReassociativeReshapeLikeOp> {
public:
using OpRewritePattern<ReassociativeReshapeLikeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ReassociativeReshapeLikeOp reshape,
PatternRewriter &rewriter) const override {
// Build a plain extract_strided_metadata(memref) from
// extract_strided_metadata(reassociative_reshape_like(memref)).
Location origLoc = reshape.getLoc();
Value source = reshape.getSrc();
auto sourceType = source.getType().cast<MemRefType>();
unsigned sourceRank = sourceType.getRank();
auto newExtractStridedMetadata =
rewriter.create<memref::ExtractStridedMetadataOp>(origLoc, source);
// Collect statically known information.
auto [strides, offset] = getStridesAndOffset(sourceType);
MemRefType reshapeType = reshape.getResultType();
unsigned reshapeRank = reshapeType.getRank();
OpFoldResult offsetOfr =
ShapedType::isDynamic(offset)
? getAsOpFoldResult(newExtractStridedMetadata.getOffset())
: rewriter.getIndexAttr(offset);
// Get the special case of 0-D out of the way.
if (sourceRank == 0) {
SmallVector<OpFoldResult> ones(reshapeRank, rewriter.getIndexAttr(1));
auto memrefDesc = rewriter.create<memref::ReinterpretCastOp>(
origLoc, reshapeType, newExtractStridedMetadata.getBaseBuffer(),
offsetOfr, /*sizes=*/ones, /*strides=*/ones);
rewriter.replaceOp(reshape, memrefDesc.getResult());
return success();
}
SmallVector<OpFoldResult> finalSizes;
finalSizes.reserve(reshapeRank);
SmallVector<OpFoldResult> finalStrides;
finalStrides.reserve(reshapeRank);
// Compute the reshaped strides and sizes from the base strides and sizes.
SmallVector<OpFoldResult> origSizes =
getAsOpFoldResult(newExtractStridedMetadata.getSizes());
SmallVector<OpFoldResult> origStrides =
getAsOpFoldResult(newExtractStridedMetadata.getStrides());
unsigned idx = 0, endIdx = reshape.getReassociationIndices().size();
for (; idx != endIdx; ++idx) {
SmallVector<OpFoldResult> reshapedSizes =
getReshapedSizes(reshape, rewriter, origSizes, /*groupId=*/idx);
SmallVector<OpFoldResult> reshapedStrides = getReshapedStrides(
reshape, rewriter, origSizes, origStrides, /*groupId=*/idx);
unsigned groupSize = reshapedSizes.size();
for (unsigned i = 0; i < groupSize; ++i) {
finalSizes.push_back(reshapedSizes[i]);
finalStrides.push_back(reshapedStrides[i]);
}
}
assert(((isa<memref::ExpandShapeOp>(reshape) && idx == sourceRank) ||
(isa<memref::CollapseShapeOp>(reshape) && idx == reshapeRank)) &&
"We should have visited all the input dimensions");
assert(finalSizes.size() == reshapeRank &&
"We should have populated all the values");
auto memrefDesc = rewriter.create<memref::ReinterpretCastOp>(
origLoc, reshapeType, newExtractStridedMetadata.getBaseBuffer(),
offsetOfr, finalSizes, finalStrides);
rewriter.replaceOp(reshape, memrefDesc.getResult());
return success();
}
};
/// Replace `base, offset, sizes, strides =
/// extract_strided_metadata(allocLikeOp)`
///
/// With
///
/// ```
/// base = reinterpret_cast allocLikeOp(allocSizes) to a flat memref<eltTy>
/// offset = 0
/// sizes = allocSizes
/// strides#i = prod(allocSizes#j, for j in {i+1..rank-1})
/// ```
///
/// The transformation only applies if the allocLikeOp has been normalized.
/// In other words, the affine_map must be an identity.
template <typename AllocLikeOp>
struct ExtractStridedMetadataOpAllocFolder
: public OpRewritePattern<memref::ExtractStridedMetadataOp> {
public:
using OpRewritePattern<memref::ExtractStridedMetadataOp>::OpRewritePattern;
LogicalResult matchAndRewrite(memref::ExtractStridedMetadataOp op,
PatternRewriter &rewriter) const override {
auto allocLikeOp = op.getSource().getDefiningOp<AllocLikeOp>();
if (!allocLikeOp)
return failure();
auto memRefType =
allocLikeOp.getResult().getType().template cast<MemRefType>();
if (!memRefType.getLayout().isIdentity())
return rewriter.notifyMatchFailure(
allocLikeOp, "alloc-like operations should have been normalized");
Location loc = op.getLoc();
int rank = memRefType.getRank();
// Collect the sizes.
ValueRange dynamic = allocLikeOp.getDynamicSizes();
SmallVector<OpFoldResult> sizes;
sizes.reserve(rank);
unsigned dynamicPos = 0;
for (int64_t size : memRefType.getShape()) {
if (ShapedType::isDynamic(size))
sizes.push_back(dynamic[dynamicPos++]);
else
sizes.push_back(rewriter.getIndexAttr(size));
}
// Strides (just creates identity strides).
SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1));
AffineExpr expr = rewriter.getAffineConstantExpr(1);
unsigned symbolNumber = 0;
for (int i = rank - 2; i >= 0; --i) {
expr = expr * rewriter.getAffineSymbolExpr(symbolNumber++);
assert(i + 1 + symbolNumber == sizes.size() &&
"The ArrayRef should encompass the last #symbolNumber sizes");
ArrayRef<OpFoldResult> sizesInvolvedInStride(&sizes[i + 1], symbolNumber);
strides[i] = makeComposedFoldedAffineApply(rewriter, loc, expr,
sizesInvolvedInStride);
}
// Put all the values together to replace the results.
SmallVector<Value> results;
results.reserve(rank * 2 + 2);
auto baseBufferType = op.getBaseBuffer().getType().cast<MemRefType>();
int64_t offset = 0;
if (allocLikeOp.getType() == baseBufferType)
results.push_back(allocLikeOp);
else
results.push_back(rewriter.create<memref::ReinterpretCastOp>(
loc, baseBufferType, allocLikeOp, offset,
/*sizes=*/ArrayRef<int64_t>(),
/*strides=*/ArrayRef<int64_t>()));
// Offset.
results.push_back(rewriter.create<arith::ConstantIndexOp>(loc, offset));
for (OpFoldResult size : sizes)
results.push_back(getValueOrCreateConstantIndexOp(rewriter, loc, size));
for (OpFoldResult stride : strides)
results.push_back(getValueOrCreateConstantIndexOp(rewriter, loc, stride));
rewriter.replaceOp(op, results);
return success();
}
};
/// Rewrite memref.extract_aligned_pointer_as_index of a ViewLikeOp to the
/// source of the ViewLikeOp.
class RewriteExtractAlignedPointerAsIndexOfViewLikeOp
: public OpRewritePattern<memref::ExtractAlignedPointerAsIndexOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult
matchAndRewrite(memref::ExtractAlignedPointerAsIndexOp extractOp,
PatternRewriter &rewriter) const override {
auto viewLikeOp =
extractOp.getSource().getDefiningOp<ViewLikeOpInterface>();
if (!viewLikeOp)
return rewriter.notifyMatchFailure(extractOp, "not a ViewLike source");
rewriter.updateRootInPlace(extractOp, [&]() {
extractOp.getSourceMutable().assign(viewLikeOp.getViewSource());
});
return success();
}
};
/// Replace `base, offset, sizes, strides =
/// extract_strided_metadata(
/// reinterpret_cast(src, srcOffset, srcSizes, srcStrides))`
/// With
/// ```
/// base, ... = extract_strided_metadata(src)
/// offset = srcOffset
/// sizes = srcSizes
/// strides = srcStrides
/// ```
///
/// In other words, consume the `reinterpret_cast` and apply its effects
/// on the offset, sizes, and strides.
class ExtractStridedMetadataOpReinterpretCastFolder
: public OpRewritePattern<memref::ExtractStridedMetadataOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult
matchAndRewrite(memref::ExtractStridedMetadataOp extractStridedMetadataOp,
PatternRewriter &rewriter) const override {
auto reinterpretCastOp = extractStridedMetadataOp.getSource()
.getDefiningOp<memref::ReinterpretCastOp>();
if (!reinterpretCastOp)
return failure();
Location loc = extractStridedMetadataOp.getLoc();
// Check if the source is suitable for extract_strided_metadata.
SmallVector<Type> inferredReturnTypes;
if (failed(extractStridedMetadataOp.inferReturnTypes(
rewriter.getContext(), loc, {reinterpretCastOp.getSource()},
/*attributes=*/{}, /*regions=*/{}, inferredReturnTypes)))
return rewriter.notifyMatchFailure(
reinterpretCastOp, "reinterpret_cast source's type is incompatible");
auto memrefType =
reinterpretCastOp.getResult().getType().cast<MemRefType>();
unsigned rank = memrefType.getRank();
SmallVector<OpFoldResult> results;
results.resize_for_overwrite(rank * 2 + 2);
auto newExtractStridedMetadata =
rewriter.create<memref::ExtractStridedMetadataOp>(
loc, reinterpretCastOp.getSource());
// Register the base_buffer.
results[0] = newExtractStridedMetadata.getBaseBuffer();
// Register the new offset.
results[1] = getValueOrCreateConstantIndexOp(
rewriter, loc, reinterpretCastOp.getMixedOffsets()[0]);
const unsigned sizeStartIdx = 2;
const unsigned strideStartIdx = sizeStartIdx + rank;
SmallVector<OpFoldResult> sizes = reinterpretCastOp.getMixedSizes();
SmallVector<OpFoldResult> strides = reinterpretCastOp.getMixedStrides();
for (unsigned i = 0; i < rank; ++i) {
results[sizeStartIdx + i] = sizes[i];
results[strideStartIdx + i] = strides[i];
}
rewriter.replaceOp(extractStridedMetadataOp,
getValueOrCreateConstantIndexOp(rewriter, loc, results));
return success();
}
};
/// Replace `base, offset =
/// extract_strided_metadata(extract_strided_metadata(src)#0)`
/// With
/// ```
/// base, ... = extract_strided_metadata(src)
/// offset = 0
/// ```
class ExtractStridedMetadataOpExtractStridedMetadataFolder
: public OpRewritePattern<memref::ExtractStridedMetadataOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult
matchAndRewrite(memref::ExtractStridedMetadataOp extractStridedMetadataOp,
PatternRewriter &rewriter) const override {
auto sourceExtractStridedMetadataOp =
extractStridedMetadataOp.getSource()
.getDefiningOp<memref::ExtractStridedMetadataOp>();
if (!sourceExtractStridedMetadataOp)
return failure();
Location loc = extractStridedMetadataOp.getLoc();
rewriter.replaceOp(extractStridedMetadataOp,
{sourceExtractStridedMetadataOp.getBaseBuffer(),
getValueOrCreateConstantIndexOp(
rewriter, loc, rewriter.getIndexAttr(0))});
return success();
}
};
} // namespace
void memref::populateExpandStridedMetadataPatterns(
RewritePatternSet &patterns) {
patterns.add<SubviewFolder,
ReshapeFolder<memref::ExpandShapeOp, getExpandedSizes,
getExpandedStrides>,
ReshapeFolder<memref::CollapseShapeOp, getCollapsedSize,
getCollapsedStride>,
ExtractStridedMetadataOpAllocFolder<memref::AllocOp>,
ExtractStridedMetadataOpAllocFolder<memref::AllocaOp>,
RewriteExtractAlignedPointerAsIndexOfViewLikeOp,
ExtractStridedMetadataOpReinterpretCastFolder,
ExtractStridedMetadataOpExtractStridedMetadataFolder>(
patterns.getContext());
}
//===----------------------------------------------------------------------===//
// Pass registration
//===----------------------------------------------------------------------===//
namespace {
struct ExpandStridedMetadataPass final
: public memref::impl::ExpandStridedMetadataBase<
ExpandStridedMetadataPass> {
void runOnOperation() override;
};
} // namespace
void ExpandStridedMetadataPass::runOnOperation() {
RewritePatternSet patterns(&getContext());
memref::populateExpandStridedMetadataPatterns(patterns);
(void)applyPatternsAndFoldGreedily(getOperation()->getRegions(),
std::move(patterns));
}
std::unique_ptr<Pass> memref::createExpandStridedMetadataPass() {
return std::make_unique<ExpandStridedMetadataPass>();
}