Suggested by @lattner in https://discourse.llvm.org/t/rfc-define-precise-arith-semantics/65507/22. Tested with: `ninja check-mlir check-mlir-integration check-mlir-mlir-spirv-cpu-runner check-mlir-mlir-vulkan-runner check-mlir-examples` and `bazel build --config=generic_clang @llvm-project//mlir:all`. Reviewed By: lattner, Mogball, rriddle, jpienaar, mehdi_amini Differential Revision: https://reviews.llvm.org/D134762
74 lines
2.6 KiB
C++
74 lines
2.6 KiB
C++
//===- OptimizeSharedMemory.cpp - MLIR NVGPU pass implementation ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements transforms to enable 1xtf32 and 3xtf32 nvgpu.mma sync
|
|
// operations on f32 input datatype
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
|
|
#include "mlir/Dialect/NVGPU/Passes.h"
|
|
#include "mlir/Dialect/NVGPU/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
|
#include "mlir/Interfaces/SideEffectInterfaces.h"
|
|
#include "mlir/Support/LogicalResult.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::nvgpu;
|
|
|
|
namespace {
|
|
|
|
struct MmaSyncF32ToTF32Pattern : public OpRewritePattern<nvgpu::MmaSyncOp> {
|
|
|
|
using OpRewritePattern<nvgpu::MmaSyncOp>::OpRewritePattern;
|
|
|
|
MmaSyncF32ToTF32Pattern(MLIRContext *context,
|
|
nvgpu::MmaSyncF32Lowering precision)
|
|
: OpRewritePattern<nvgpu::MmaSyncOp>(context, /*benifit*/ 1),
|
|
precision(precision) {}
|
|
|
|
LogicalResult matchAndRewrite(nvgpu::MmaSyncOp op,
|
|
PatternRewriter &rewrite) const override {
|
|
Location location = op->getLoc();
|
|
|
|
if (op->hasAttr(op.getTf32EnabledAttrName()) ||
|
|
!op.getMatrixA().getType().cast<VectorType>().getElementType().isF32())
|
|
return failure();
|
|
|
|
if (precision == MmaSyncF32Lowering::Unkown)
|
|
return emitError(location, "MmaSync F32-to-TF32 cannot be lowered with "
|
|
"unknown precision level");
|
|
|
|
if (precision == MmaSyncF32Lowering::TF32x3)
|
|
return emitError(location, "TF32x3 is not supported at the moment "
|
|
"for nvgpu.mma.sync on f32 datatype");
|
|
|
|
if (precision == MmaSyncF32Lowering::TF32)
|
|
op.setTf32EnabledAttr(rewrite.getUnitAttr());
|
|
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
/// Precision for F32 Tensor Cores (TF32 or TF32x3)
|
|
nvgpu::MmaSyncF32Lowering precision;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void mlir::nvgpu::populateMmaSyncF32ToTF32Patterns(
|
|
RewritePatternSet &patterns, nvgpu::MmaSyncF32Lowering precision) {
|
|
|
|
patterns.add<MmaSyncF32ToTF32Pattern>(patterns.getContext(), precision);
|
|
}
|