Files
clang-p2996/mlir/lib/Dialect/NVGPU/Transforms/MmaSyncTF32Transform.cpp
Jakub Kuderski abc362a107 [mlir][arith] Change dialect name from Arithmetic to Arith
Suggested by @lattner in https://discourse.llvm.org/t/rfc-define-precise-arith-semantics/65507/22.

Tested with:
`ninja check-mlir check-mlir-integration check-mlir-mlir-spirv-cpu-runner check-mlir-mlir-vulkan-runner check-mlir-examples`

and `bazel build --config=generic_clang @llvm-project//mlir:all`.

Reviewed By: lattner, Mogball, rriddle, jpienaar, mehdi_amini

Differential Revision: https://reviews.llvm.org/D134762
2022-09-29 11:23:28 -04:00

74 lines
2.6 KiB
C++

//===- OptimizeSharedMemory.cpp - MLIR NVGPU pass implementation ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements transforms to enable 1xtf32 and 3xtf32 nvgpu.mma sync
// operations on f32 input datatype
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
#include "mlir/Dialect/NVGPU/Passes.h"
#include "mlir/Dialect/NVGPU/Transforms/Transforms.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MathExtras.h"
using namespace mlir;
using namespace mlir::nvgpu;
namespace {
struct MmaSyncF32ToTF32Pattern : public OpRewritePattern<nvgpu::MmaSyncOp> {
using OpRewritePattern<nvgpu::MmaSyncOp>::OpRewritePattern;
MmaSyncF32ToTF32Pattern(MLIRContext *context,
nvgpu::MmaSyncF32Lowering precision)
: OpRewritePattern<nvgpu::MmaSyncOp>(context, /*benifit*/ 1),
precision(precision) {}
LogicalResult matchAndRewrite(nvgpu::MmaSyncOp op,
PatternRewriter &rewrite) const override {
Location location = op->getLoc();
if (op->hasAttr(op.getTf32EnabledAttrName()) ||
!op.getMatrixA().getType().cast<VectorType>().getElementType().isF32())
return failure();
if (precision == MmaSyncF32Lowering::Unkown)
return emitError(location, "MmaSync F32-to-TF32 cannot be lowered with "
"unknown precision level");
if (precision == MmaSyncF32Lowering::TF32x3)
return emitError(location, "TF32x3 is not supported at the moment "
"for nvgpu.mma.sync on f32 datatype");
if (precision == MmaSyncF32Lowering::TF32)
op.setTf32EnabledAttr(rewrite.getUnitAttr());
return success();
}
private:
/// Precision for F32 Tensor Cores (TF32 or TF32x3)
nvgpu::MmaSyncF32Lowering precision;
};
} // namespace
void mlir::nvgpu::populateMmaSyncF32ToTF32Patterns(
RewritePatternSet &patterns, nvgpu::MmaSyncF32Lowering precision) {
patterns.add<MmaSyncF32ToTF32Pattern>(patterns.getContext(), precision);
}