Files
clang-p2996/mlir/lib/Dialect/SCF/Utils/AffineCanonicalizationUtils.cpp

196 lines
7.7 KiB
C++

//===- AffineCanonicalizationUtils.cpp - Affine Canonicalization in SCF ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Utility functions to canonicalize affine ops within SCF op regions.
//
//===----------------------------------------------------------------------===//
#include <utility>
#include "mlir/Dialect/SCF/Utils/AffineCanonicalizationUtils.h"
#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
#include "mlir/Dialect/Affine/Analysis/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "mlir-scf-affine-utils"
using namespace mlir;
using namespace presburger;
static FailureOr<AffineApplyOp>
canonicalizeMinMaxOp(RewriterBase &rewriter, Operation *op,
FlatAffineValueConstraints constraints) {
RewriterBase::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(op);
FailureOr<AffineValueMap> simplified =
mlir::simplifyConstrainedMinMaxOp(op, std::move(constraints));
if (failed(simplified))
return failure();
return rewriter.replaceOpWithNewOp<AffineApplyOp>(
op, simplified->getAffineMap(), simplified->getOperands());
}
static LogicalResult
addLoopRangeConstraints(FlatAffineValueConstraints &constraints, Value iv,
OpFoldResult lb, OpFoldResult ub, OpFoldResult step,
RewriterBase &rewriter) {
// IntegerPolyhedron does not support semi-affine expressions.
// Therefore, only constant step values are supported.
auto stepInt = getConstantIntValue(step);
if (!stepInt)
return failure();
unsigned dimIv = constraints.appendDimVar(iv);
auto lbv = lb.dyn_cast<Value>();
unsigned symLb = lbv ? constraints.appendSymbolVar(lbv)
: constraints.appendSymbolVar(/*num=*/1);
auto ubv = ub.dyn_cast<Value>();
unsigned symUb = ubv ? constraints.appendSymbolVar(ubv)
: constraints.appendSymbolVar(/*num=*/1);
// If loop lower/upper bounds are constant: Add EQ constraint.
std::optional<int64_t> lbInt = getConstantIntValue(lb);
std::optional<int64_t> ubInt = getConstantIntValue(ub);
if (lbInt)
constraints.addBound(IntegerPolyhedron::EQ, symLb, *lbInt);
if (ubInt)
constraints.addBound(IntegerPolyhedron::EQ, symUb, *ubInt);
// Lower bound: iv >= lb (equiv.: iv - lb >= 0)
SmallVector<int64_t> ineqLb(constraints.getNumCols(), 0);
ineqLb[dimIv] = 1;
ineqLb[symLb] = -1;
constraints.addInequality(ineqLb);
// Upper bound
AffineExpr ivUb;
if (lbInt && ubInt && (*lbInt + *stepInt >= *ubInt)) {
// The loop has at most one iteration.
// iv < lb + 1
// TODO: Try to derive this constraint by simplifying the expression in
// the else-branch.
ivUb =
rewriter.getAffineSymbolExpr(symLb - constraints.getNumDimVars()) + 1;
} else {
// The loop may have more than one iteration.
// iv < lb + step * ((ub - lb - 1) floorDiv step) + 1
AffineExpr exprLb =
lbInt
? rewriter.getAffineConstantExpr(*lbInt)
: rewriter.getAffineSymbolExpr(symLb - constraints.getNumDimVars());
AffineExpr exprUb =
ubInt
? rewriter.getAffineConstantExpr(*ubInt)
: rewriter.getAffineSymbolExpr(symUb - constraints.getNumDimVars());
ivUb = exprLb + 1 + (*stepInt * ((exprUb - exprLb - 1).floorDiv(*stepInt)));
}
auto map = AffineMap::get(
/*dimCount=*/constraints.getNumDimVars(),
/*symbolCount=*/constraints.getNumSymbolVars(), /*result=*/ivUb);
return constraints.addBound(IntegerPolyhedron::UB, dimIv, map);
}
/// Canonicalize min/max operations in the context of for loops with a known
/// range. Call `canonicalizeMinMaxOp` and add the following constraints to
/// the constraint system (along with the missing dimensions):
///
/// * iv >= lb
/// * iv < lb + step * ((ub - lb - 1) floorDiv step) + 1
///
/// Note: Due to limitations of IntegerPolyhedron, only constant step sizes
/// are currently supported.
LogicalResult scf::canonicalizeMinMaxOpInLoop(RewriterBase &rewriter,
Operation *op,
LoopMatcherFn loopMatcher) {
FlatAffineValueConstraints constraints;
DenseSet<Value> allIvs;
// Find all iteration variables among `minOp`'s operands add constrain them.
for (Value operand : op->getOperands()) {
// Skip duplicate ivs.
if (llvm::is_contained(allIvs, operand))
continue;
// If `operand` is an iteration variable: Find corresponding loop
// bounds and step.
Value iv = operand;
OpFoldResult lb, ub, step;
if (failed(loopMatcher(operand, lb, ub, step)))
continue;
allIvs.insert(iv);
if (failed(
addLoopRangeConstraints(constraints, iv, lb, ub, step, rewriter)))
return failure();
}
return canonicalizeMinMaxOp(rewriter, op, constraints);
}
/// Try to simplify the given affine.min/max operation `op` after loop peeling.
/// This function can simplify min/max operations such as (ub is the previous
/// upper bound of the unpeeled loop):
/// ```
/// #map = affine_map<(d0)[s0, s1] -> (s0, -d0 + s1)>
/// %r = affine.min #affine.min #map(%iv)[%step, %ub]
/// ```
/// and rewrites them into (in the case the peeled loop):
/// ```
/// %r = %step
/// ```
/// min/max operations inside the partial iteration are rewritten in a similar
/// way.
///
/// This function builds up a set of constraints, capable of proving that:
/// * Inside the peeled loop: min(step, ub - iv) == step
/// * Inside the partial iteration: min(step, ub - iv) == ub - iv
///
/// Returns `success` if the given operation was replaced by a new operation;
/// `failure` otherwise.
///
/// Note: `ub` is the previous upper bound of the loop (before peeling).
/// `insideLoop` must be true for min/max ops inside the loop and false for
/// affine.min ops inside the partial iteration. For an explanation of the other
/// parameters, see comment of `canonicalizeMinMaxOpInLoop`.
LogicalResult scf::rewritePeeledMinMaxOp(RewriterBase &rewriter, Operation *op,
Value iv, Value ub, Value step,
bool insideLoop) {
FlatAffineValueConstraints constraints;
constraints.appendDimVar({iv, ub, step});
if (auto constUb = getConstantIntValue(ub))
constraints.addBound(IntegerPolyhedron::EQ, 1, *constUb);
if (auto constStep = getConstantIntValue(step))
constraints.addBound(IntegerPolyhedron::EQ, 2, *constStep);
// Add loop peeling invariant. This is the main piece of knowledge that
// enables AffineMinOp simplification.
if (insideLoop) {
// ub - iv >= step (equiv.: -iv + ub - step + 0 >= 0)
// Intuitively: Inside the peeled loop, every iteration is a "full"
// iteration, i.e., step divides the iteration space `ub - lb` evenly.
constraints.addInequality({-1, 1, -1, 0});
} else {
// ub - iv < step (equiv.: iv + -ub + step - 1 >= 0)
// Intuitively: `iv` is the split bound here, i.e., the iteration variable
// value of the very last iteration (in the unpeeled loop). At that point,
// there are less than `step` elements remaining. (Otherwise, the peeled
// loop would run for at least one more iteration.)
constraints.addInequality({1, -1, 1, -1});
}
return canonicalizeMinMaxOp(rewriter, op, constraints);
}