At the moment, they are a part of EmptyOp::getCanonicalizationPatterns. When extract_slice(tensor.empty) is rewritten as a new tensor.empty, it could happen that we end up with two tensor.empty ops, since the original tensor.empty can have two users. After bufferization such cases result in two allocations. Differential Revision: https://reviews.llvm.org/D139308
80 lines
3.2 KiB
C++
80 lines
3.2 KiB
C++
//===- EmptyOpPatterns.cpp - Patterns related to tensor.empty folding ----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::tensor;
|
|
|
|
namespace {
|
|
|
|
template <typename ReshapeOp>
|
|
struct FoldEmptyTensorWithReshapeOp : public OpRewritePattern<ReshapeOp> {
|
|
using OpRewritePattern<ReshapeOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(ReshapeOp reshapeOp,
|
|
PatternRewriter &rewriter) const override {
|
|
if (!reshapeOp.getSrc().template getDefiningOp<EmptyOp>())
|
|
return failure();
|
|
Location loc = reshapeOp.getLoc();
|
|
ReifiedRankedShapedTypeDims resultShapes;
|
|
ReifyRankedShapedTypeOpInterface reifyShapedTypeInterface =
|
|
cast<ReifyRankedShapedTypeOpInterface>(reshapeOp.getOperation());
|
|
if (failed(reifyShapedTypeInterface.reifyResultShapes(rewriter,
|
|
resultShapes)) ||
|
|
!llvm::hasSingleElement(resultShapes))
|
|
return failure();
|
|
// TODO: Do not drop tensor type encoding.
|
|
Value emptyTensor =
|
|
rewriter.create<EmptyOp>(loc, getAsOpFoldResult(resultShapes[0]),
|
|
reshapeOp.getResultType().getElementType());
|
|
if (emptyTensor.getType() != reshapeOp.getResultType()) {
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(
|
|
reshapeOp, reshapeOp.getResultType(), emptyTensor);
|
|
} else {
|
|
rewriter.replaceOp(reshapeOp, emptyTensor);
|
|
}
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// `tensor.empty` does not define any tensor contents, so a slice of a
|
|
/// `tensor.empty` can be canonicalized to a smaller `tensor.empty`.
|
|
struct FoldEmptyTensorWithExtractSliceOp
|
|
: public OpRewritePattern<ExtractSliceOp> {
|
|
using OpRewritePattern<ExtractSliceOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(ExtractSliceOp sliceOp,
|
|
PatternRewriter &rewriter) const override {
|
|
if (!sliceOp.getSource().getDefiningOp<EmptyOp>())
|
|
return failure();
|
|
|
|
// ExtractSliceOp may be rank-reducing; its dynamic sizes must be
|
|
// preserved as well as its result type.
|
|
auto tensorType = RankedTensorType::get(sliceOp.getType().getShape(),
|
|
sliceOp.getType().getElementType(),
|
|
sliceOp.getType().getEncoding());
|
|
rewriter.replaceOpWithNewOp<EmptyOp>(sliceOp, tensorType,
|
|
sliceOp.getSizes());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void mlir::tensor::populateFoldTensorEmptyPatterns(
|
|
RewritePatternSet &patterns) {
|
|
patterns.add<FoldEmptyTensorWithExtractSliceOp,
|
|
FoldEmptyTensorWithReshapeOp<tensor::ExpandShapeOp>,
|
|
FoldEmptyTensorWithReshapeOp<tensor::CollapseShapeOp>>(
|
|
patterns.getContext());
|
|
}
|