This allows writing simple e2e tests where we can check for the proper materialization of specific LLVM IR (e.g. `llvm.intr.fmuladd`). Differential Revision: https://reviews.llvm.org/D138776
26 lines
1.1 KiB
MLIR
26 lines
1.1 KiB
MLIR
// RUN: mlir-opt %s --test-transform-dialect-interpreter -test-transform-dialect-erase-schedule --test-lower-to-llvm --split-input-file | FileCheck %s
|
|
|
|
// CHECK-LABEL: llvm.func @matmul_tensors
|
|
func.func @matmul_tensors(
|
|
%arg0: tensor<2x4xf32>, %arg1: tensor<4x6xf32>, %arg2: tensor<2x6xf32>)
|
|
-> tensor<2x6xf32> {
|
|
// CHECK-NOT: linalg
|
|
// CHECK: llvm.intr.fmuladd{{.*}}
|
|
%0 = linalg.matmul ins(%arg0, %arg1: tensor<2x4xf32>, tensor<4x6xf32>)
|
|
outs(%arg2: tensor<2x6xf32>)
|
|
-> tensor<2x6xf32>
|
|
return %0 : tensor<2x6xf32>
|
|
}
|
|
|
|
transform.sequence failures(propagate) {
|
|
^bb1(%module_op: !pdl.operation):
|
|
%0 = transform.structured.match ops{["linalg.matmul"]} in %module_op
|
|
%1, %loops:3 = transform.structured.tile %0 [2, 2, 2]
|
|
%2 = get_closest_isolated_parent %1 : (!pdl.operation) -> !pdl.operation
|
|
transform.structured.vectorize %2
|
|
transform.bufferization.one_shot_bufferize layout{IdentityLayoutMap} %module_op
|
|
{bufferize_function_boundaries = true}
|
|
%func = transform.structured.match ops{["func.func"]} in %module_op
|
|
transform.vector.lower_vectors %func { multireduction_lowering = "innerreduce"}
|
|
}
|