Files
clang-p2996/mlir/test/Dialect/SparseTensor/sparse_vector_concat.mlir
2022-12-14 13:07:14 -08:00

32 lines
1.0 KiB
MLIR

// RUN: mlir-opt %s --sparse-compiler="enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
#MAT_D_C = #sparse_tensor.encoding<{
dimLevelType = ["dense", "compressed"]
}>
#MAT_C_C_P = #sparse_tensor.encoding<{
dimLevelType = [ "compressed", "compressed" ],
dimOrdering = affine_map<(i,j) -> (j,i)>
}>
#MAT_C_D_P = #sparse_tensor.encoding<{
dimLevelType = [ "compressed", "dense" ],
dimOrdering = affine_map<(i,j) -> (j,i)>
}>
//
// Ensures only last loop is vectorized
// (vectorizing the others would crash).
//
// CHECK-LABEL: llvm.func @foo
// CHECK: llvm.intr.masked.load
// CHECK: llvm.intr.masked.scatter
//
func.func @foo(%arg0: tensor<2x4xf64, #MAT_C_C_P>,
%arg1: tensor<3x4xf64, #MAT_C_D_P>,
%arg2: tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64> {
%0 = sparse_tensor.concatenate %arg0, %arg1, %arg2 {dimension = 0 : index}
: tensor<2x4xf64, #MAT_C_C_P>, tensor<3x4xf64, #MAT_C_D_P>, tensor<4x4xf64, #MAT_D_C> to tensor<9x4xf64>
return %0 : tensor<9x4xf64>
}