32 lines
1.0 KiB
MLIR
32 lines
1.0 KiB
MLIR
// RUN: mlir-opt %s --sparse-compiler="enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
|
|
|
|
#MAT_D_C = #sparse_tensor.encoding<{
|
|
dimLevelType = ["dense", "compressed"]
|
|
}>
|
|
|
|
#MAT_C_C_P = #sparse_tensor.encoding<{
|
|
dimLevelType = [ "compressed", "compressed" ],
|
|
dimOrdering = affine_map<(i,j) -> (j,i)>
|
|
}>
|
|
|
|
#MAT_C_D_P = #sparse_tensor.encoding<{
|
|
dimLevelType = [ "compressed", "dense" ],
|
|
dimOrdering = affine_map<(i,j) -> (j,i)>
|
|
}>
|
|
|
|
//
|
|
// Ensures only last loop is vectorized
|
|
// (vectorizing the others would crash).
|
|
//
|
|
// CHECK-LABEL: llvm.func @foo
|
|
// CHECK: llvm.intr.masked.load
|
|
// CHECK: llvm.intr.masked.scatter
|
|
//
|
|
func.func @foo(%arg0: tensor<2x4xf64, #MAT_C_C_P>,
|
|
%arg1: tensor<3x4xf64, #MAT_C_D_P>,
|
|
%arg2: tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64> {
|
|
%0 = sparse_tensor.concatenate %arg0, %arg1, %arg2 {dimension = 0 : index}
|
|
: tensor<2x4xf64, #MAT_C_C_P>, tensor<3x4xf64, #MAT_C_D_P>, tensor<4x4xf64, #MAT_D_C> to tensor<9x4xf64>
|
|
return %0 : tensor<9x4xf64>
|
|
}
|