110 lines
3.9 KiB
MLIR
110 lines
3.9 KiB
MLIR
// DEFINE: %{option} = enable-runtime-library=true
|
|
// DEFINE: %{command} = mlir-opt %s --sparse-compiler=%{option} | \
|
|
// DEFINE: TENSOR0="%mlir_src_dir/test/Integration/data/test.mtx" \
|
|
// DEFINE: mlir-cpu-runner \
|
|
// DEFINE: -e entry -entry-point-result=void \
|
|
// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext,%mlir_lib_dir/libmlir_runner_utils%shlibext | \
|
|
// DEFINE: FileCheck %s
|
|
//
|
|
// RUN: %{command}
|
|
//
|
|
// Do the same run, but now with direct IR generation.
|
|
// REDEFINE: %{option} = enable-runtime-library=false
|
|
// RUN: %{command}
|
|
//
|
|
// Do the same run, but now with direct IR generation and vectorization.
|
|
// REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
|
|
// RUN: %{command}
|
|
|
|
!Filename = !llvm.ptr<i8>
|
|
|
|
#DenseMatrix = #sparse_tensor.encoding<{
|
|
dimLevelType = [ "dense", "dense" ],
|
|
dimOrdering = affine_map<(i,j) -> (i,j)>
|
|
}>
|
|
|
|
#SparseMatrix = #sparse_tensor.encoding<{
|
|
dimLevelType = [ "dense", "compressed" ],
|
|
dimOrdering = affine_map<(i,j) -> (i,j)>
|
|
}>
|
|
|
|
#trait_assign = {
|
|
indexing_maps = [
|
|
affine_map<(i,j) -> (i,j)>, // A
|
|
affine_map<(i,j) -> (i,j)> // X (out)
|
|
],
|
|
iterator_types = ["parallel", "parallel"],
|
|
doc = "X(i,j) = A(i,j) * 2"
|
|
}
|
|
|
|
//
|
|
// Integration test that demonstrates assigning a sparse tensor
|
|
// to an all-dense annotated "sparse" tensor, which effectively
|
|
// result in inserting the nonzero elements into a linearized array.
|
|
//
|
|
// Note that there is a subtle difference between a non-annotated
|
|
// tensor and an all-dense annotated tensor. Both tensors are assumed
|
|
// dense, but the former remains an n-dimensional memref whereas the
|
|
// latter is linearized into a one-dimensional memref that is further
|
|
// lowered into a storage scheme that is backed by the runtime support
|
|
// library.
|
|
module {
|
|
//
|
|
// A kernel that assigns multiplied elements from A to X.
|
|
//
|
|
func.func @dense_output(%arga: tensor<?x?xf64, #SparseMatrix>) -> tensor<?x?xf64, #DenseMatrix> {
|
|
%c0 = arith.constant 0 : index
|
|
%c1 = arith.constant 1 : index
|
|
%c2 = arith.constant 2.0 : f64
|
|
%d0 = tensor.dim %arga, %c0 : tensor<?x?xf64, #SparseMatrix>
|
|
%d1 = tensor.dim %arga, %c1 : tensor<?x?xf64, #SparseMatrix>
|
|
%init = bufferization.alloc_tensor(%d0, %d1) : tensor<?x?xf64, #DenseMatrix>
|
|
%0 = linalg.generic #trait_assign
|
|
ins(%arga: tensor<?x?xf64, #SparseMatrix>)
|
|
outs(%init: tensor<?x?xf64, #DenseMatrix>) {
|
|
^bb(%a: f64, %x: f64):
|
|
%0 = arith.mulf %a, %c2 : f64
|
|
linalg.yield %0 : f64
|
|
} -> tensor<?x?xf64, #DenseMatrix>
|
|
return %0 : tensor<?x?xf64, #DenseMatrix>
|
|
}
|
|
|
|
func.func private @getTensorFilename(index) -> (!Filename)
|
|
func.func private @printMemref1dF64(%ptr : memref<?xf64>) attributes { llvm.emit_c_interface }
|
|
|
|
//
|
|
// Main driver that reads matrix from file and calls the kernel.
|
|
//
|
|
func.func @entry() {
|
|
%d0 = arith.constant 0.0 : f64
|
|
%c0 = arith.constant 0 : index
|
|
%c1 = arith.constant 1 : index
|
|
|
|
// Read the sparse matrix from file, construct sparse storage.
|
|
%fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
|
|
%a = sparse_tensor.new %fileName
|
|
: !Filename to tensor<?x?xf64, #SparseMatrix>
|
|
|
|
// Call the kernel.
|
|
%0 = call @dense_output(%a)
|
|
: (tensor<?x?xf64, #SparseMatrix>) -> tensor<?x?xf64, #DenseMatrix>
|
|
|
|
//
|
|
// Print the linearized 5x5 result for verification.
|
|
// CHECK: 25
|
|
// CHECK: [2, 0, 0, 2.8, 0, 0, 4, 0, 0, 5, 0, 0, 6, 0, 0, 8.2, 0, 0, 8, 0, 0, 10.4, 0, 0, 10
|
|
//
|
|
%n = sparse_tensor.number_of_entries %0 : tensor<?x?xf64, #DenseMatrix>
|
|
vector.print %n : index
|
|
%m = sparse_tensor.values %0
|
|
: tensor<?x?xf64, #DenseMatrix> to memref<?xf64>
|
|
call @printMemref1dF64(%m) : (memref<?xf64>) -> ()
|
|
|
|
// Release the resources.
|
|
bufferization.dealloc_tensor %a : tensor<?x?xf64, #SparseMatrix>
|
|
bufferization.dealloc_tensor %0 : tensor<?x?xf64, #DenseMatrix>
|
|
|
|
return
|
|
}
|
|
}
|