128 lines
5.0 KiB
MLIR
128 lines
5.0 KiB
MLIR
// DEFINE: %{option} = enable-runtime-library=true
|
|
// DEFINE: %{command} = mlir-opt %s --sparse-compiler=%{option} | \
|
|
// DEFINE: mlir-cpu-runner \
|
|
// DEFINE: -e entry -entry-point-result=void \
|
|
// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \
|
|
// DEFINE: FileCheck %s
|
|
//
|
|
// RUN: %{command}
|
|
//
|
|
// Do the same run, but now with direct IR generation.
|
|
// REDEFINE: %{option} = enable-runtime-library=false
|
|
// RUN: %{command}
|
|
//
|
|
// Do the same run, but now with direct IR generation and vectorization.
|
|
// REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
|
|
// RUN: %{command}
|
|
|
|
#SparseVector = #sparse_tensor.encoding<{dimLevelType = ["compressed"]}>
|
|
|
|
#trait_op = {
|
|
indexing_maps = [
|
|
affine_map<(i) -> (i)>, // a (in)
|
|
affine_map<(i) -> (i)>, // b (in)
|
|
affine_map<(i) -> (i)> // x (out)
|
|
],
|
|
iterator_types = ["parallel"],
|
|
doc = "x(i) = a(i) OP b(i)"
|
|
}
|
|
|
|
module {
|
|
func.func @cadd(%arga: tensor<?xcomplex<f64>, #SparseVector>,
|
|
%argb: tensor<?xcomplex<f64>, #SparseVector>)
|
|
-> tensor<?xcomplex<f64>, #SparseVector> {
|
|
%c = arith.constant 0 : index
|
|
%d = tensor.dim %arga, %c : tensor<?xcomplex<f64>, #SparseVector>
|
|
%xv = bufferization.alloc_tensor(%d) : tensor<?xcomplex<f64>, #SparseVector>
|
|
%0 = linalg.generic #trait_op
|
|
ins(%arga, %argb: tensor<?xcomplex<f64>, #SparseVector>,
|
|
tensor<?xcomplex<f64>, #SparseVector>)
|
|
outs(%xv: tensor<?xcomplex<f64>, #SparseVector>) {
|
|
^bb(%a: complex<f64>, %b: complex<f64>, %x: complex<f64>):
|
|
%1 = complex.add %a, %b : complex<f64>
|
|
linalg.yield %1 : complex<f64>
|
|
} -> tensor<?xcomplex<f64>, #SparseVector>
|
|
return %0 : tensor<?xcomplex<f64>, #SparseVector>
|
|
}
|
|
|
|
func.func @cmul(%arga: tensor<?xcomplex<f64>, #SparseVector>,
|
|
%argb: tensor<?xcomplex<f64>, #SparseVector>)
|
|
-> tensor<?xcomplex<f64>, #SparseVector> {
|
|
%c = arith.constant 0 : index
|
|
%d = tensor.dim %arga, %c : tensor<?xcomplex<f64>, #SparseVector>
|
|
%xv = bufferization.alloc_tensor(%d) : tensor<?xcomplex<f64>, #SparseVector>
|
|
%0 = linalg.generic #trait_op
|
|
ins(%arga, %argb: tensor<?xcomplex<f64>, #SparseVector>,
|
|
tensor<?xcomplex<f64>, #SparseVector>)
|
|
outs(%xv: tensor<?xcomplex<f64>, #SparseVector>) {
|
|
^bb(%a: complex<f64>, %b: complex<f64>, %x: complex<f64>):
|
|
%1 = complex.mul %a, %b : complex<f64>
|
|
linalg.yield %1 : complex<f64>
|
|
} -> tensor<?xcomplex<f64>, #SparseVector>
|
|
return %0 : tensor<?xcomplex<f64>, #SparseVector>
|
|
}
|
|
|
|
func.func @dump(%arg0: tensor<?xcomplex<f64>, #SparseVector>, %d: index) {
|
|
%c0 = arith.constant 0 : index
|
|
%c1 = arith.constant 1 : index
|
|
%mem = sparse_tensor.values %arg0 : tensor<?xcomplex<f64>, #SparseVector> to memref<?xcomplex<f64>>
|
|
scf.for %i = %c0 to %d step %c1 {
|
|
%v = memref.load %mem[%i] : memref<?xcomplex<f64>>
|
|
%real = complex.re %v : complex<f64>
|
|
%imag = complex.im %v : complex<f64>
|
|
vector.print %real : f64
|
|
vector.print %imag : f64
|
|
}
|
|
return
|
|
}
|
|
|
|
// Driver method to call and verify complex kernels.
|
|
func.func @entry() {
|
|
// Setup sparse vectors.
|
|
%v1 = arith.constant sparse<
|
|
[ [0], [28], [31] ],
|
|
[ (511.13, 2.0), (3.0, 4.0), (5.0, 6.0) ] > : tensor<32xcomplex<f64>>
|
|
%v2 = arith.constant sparse<
|
|
[ [1], [28], [31] ],
|
|
[ (1.0, 0.0), (2.0, 0.0), (3.0, 0.0) ] > : tensor<32xcomplex<f64>>
|
|
%sv1 = sparse_tensor.convert %v1 : tensor<32xcomplex<f64>> to tensor<?xcomplex<f64>, #SparseVector>
|
|
%sv2 = sparse_tensor.convert %v2 : tensor<32xcomplex<f64>> to tensor<?xcomplex<f64>, #SparseVector>
|
|
|
|
// Call sparse vector kernels.
|
|
%0 = call @cadd(%sv1, %sv2)
|
|
: (tensor<?xcomplex<f64>, #SparseVector>,
|
|
tensor<?xcomplex<f64>, #SparseVector>) -> tensor<?xcomplex<f64>, #SparseVector>
|
|
%1 = call @cmul(%sv1, %sv2)
|
|
: (tensor<?xcomplex<f64>, #SparseVector>,
|
|
tensor<?xcomplex<f64>, #SparseVector>) -> tensor<?xcomplex<f64>, #SparseVector>
|
|
|
|
//
|
|
// Verify the results.
|
|
//
|
|
// CHECK: 511.13
|
|
// CHECK-NEXT: 2
|
|
// CHECK-NEXT: 1
|
|
// CHECK-NEXT: 0
|
|
// CHECK-NEXT: 5
|
|
// CHECK-NEXT: 4
|
|
// CHECK-NEXT: 8
|
|
// CHECK-NEXT: 6
|
|
// CHECK-NEXT: 6
|
|
// CHECK-NEXT: 8
|
|
// CHECK-NEXT: 15
|
|
// CHECK-NEXT: 18
|
|
//
|
|
%d1 = arith.constant 4 : index
|
|
%d2 = arith.constant 2 : index
|
|
call @dump(%0, %d1) : (tensor<?xcomplex<f64>, #SparseVector>, index) -> ()
|
|
call @dump(%1, %d2) : (tensor<?xcomplex<f64>, #SparseVector>, index) -> ()
|
|
|
|
// Release the resources.
|
|
bufferization.dealloc_tensor %sv1 : tensor<?xcomplex<f64>, #SparseVector>
|
|
bufferization.dealloc_tensor %sv2 : tensor<?xcomplex<f64>, #SparseVector>
|
|
bufferization.dealloc_tensor %0 : tensor<?xcomplex<f64>, #SparseVector>
|
|
bufferization.dealloc_tensor %1 : tensor<?xcomplex<f64>, #SparseVector>
|
|
return
|
|
}
|
|
}
|