78 lines
2.6 KiB
MLIR
78 lines
2.6 KiB
MLIR
// DEFINE: %{option} = enable-runtime-library=true
|
|
// DEFINE: %{command} = mlir-opt %s --sparse-compiler=%{option} | \
|
|
// DEFINE: mlir-cpu-runner \
|
|
// DEFINE: -e entry -entry-point-result=void \
|
|
// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \
|
|
// DEFINE: FileCheck %s
|
|
//
|
|
// RUN: %{command}
|
|
//
|
|
// Do the same run, but now with direct IR generation.
|
|
// REDEFINE: %{option} = enable-runtime-library=false
|
|
// RUN: %{command}
|
|
//
|
|
// Do the same run, but now with direct IR generation and vectorization.
|
|
// REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
|
|
// RUN: %{command}
|
|
|
|
#SparseVector = #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>
|
|
|
|
module {
|
|
|
|
//
|
|
// Sparse kernel.
|
|
//
|
|
func.func @sparse_dot(%a: tensor<1024xf32, #SparseVector>,
|
|
%b: tensor<1024xf32, #SparseVector>,
|
|
%x: tensor<f32>) -> tensor<f32> {
|
|
%dot = linalg.dot ins(%a, %b: tensor<1024xf32, #SparseVector>,
|
|
tensor<1024xf32, #SparseVector>)
|
|
outs(%x: tensor<f32>) -> tensor<f32>
|
|
return %dot : tensor<f32>
|
|
}
|
|
|
|
//
|
|
// Main driver.
|
|
//
|
|
func.func @entry() {
|
|
// Setup two sparse vectors.
|
|
%d1 = arith.constant sparse<
|
|
[ [0], [1], [22], [23], [1022] ], [1.0, 2.0, 3.0, 4.0, 5.0]
|
|
> : tensor<1024xf32>
|
|
%d2 = arith.constant sparse<
|
|
[ [22], [1022], [1023] ], [6.0, 7.0, 8.0]
|
|
> : tensor<1024xf32>
|
|
%s1 = sparse_tensor.convert %d1 : tensor<1024xf32> to tensor<1024xf32, #SparseVector>
|
|
%s2 = sparse_tensor.convert %d2 : tensor<1024xf32> to tensor<1024xf32, #SparseVector>
|
|
|
|
// Call the kernel and verify the output.
|
|
//
|
|
// CHECK: 53
|
|
//
|
|
%t = bufferization.alloc_tensor() : tensor<f32>
|
|
%z = arith.constant 0.0 : f32
|
|
%x = tensor.insert %z into %t[] : tensor<f32>
|
|
%0 = call @sparse_dot(%s1, %s2, %x) : (tensor<1024xf32, #SparseVector>,
|
|
tensor<1024xf32, #SparseVector>,
|
|
tensor<f32>) -> tensor<f32>
|
|
%1 = tensor.extract %0[] : tensor<f32>
|
|
vector.print %1 : f32
|
|
|
|
// Print number of entries in the sparse vectors.
|
|
//
|
|
// CHECK: 5
|
|
// CHECK: 3
|
|
//
|
|
%noe1 = sparse_tensor.number_of_entries %s1 : tensor<1024xf32, #SparseVector>
|
|
%noe2 = sparse_tensor.number_of_entries %s2 : tensor<1024xf32, #SparseVector>
|
|
vector.print %noe1 : index
|
|
vector.print %noe2 : index
|
|
|
|
// Release the resources.
|
|
bufferization.dealloc_tensor %s1 : tensor<1024xf32, #SparseVector>
|
|
bufferization.dealloc_tensor %s2 : tensor<1024xf32, #SparseVector>
|
|
|
|
return
|
|
}
|
|
}
|