93 lines
3.2 KiB
MLIR
93 lines
3.2 KiB
MLIR
// DEFINE: %{option} = enable-runtime-library=true
|
|
// DEFINE: %{command} = mlir-opt %s --sparse-compiler=%{option} | \
|
|
// DEFINE: mlir-cpu-runner \
|
|
// DEFINE: -e entry -entry-point-result=void \
|
|
// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext,%mlir_lib_dir/libmlir_runner_utils%shlibext | \
|
|
// DEFINE: FileCheck %s
|
|
//
|
|
// RUN: %{command}
|
|
//
|
|
// Do the same run, but now with direct IR generation.
|
|
// REDEFINE: %{option} = enable-runtime-library=false
|
|
// RUN: %{command}
|
|
//
|
|
// Do the same run, but now with direct IR generation and vectorization.
|
|
// REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
|
|
// RUN: %{command}
|
|
|
|
#CSC = #sparse_tensor.encoding<{
|
|
dimLevelType = [ "dense", "compressed" ],
|
|
dimOrdering = affine_map<(i,j) -> (j,i)>
|
|
}>
|
|
|
|
module {
|
|
func.func private @printMemrefF64(%ptr : tensor<*xf64>)
|
|
|
|
//
|
|
// Column-wise storage forces the ijk loop to permute into jki
|
|
// so that access pattern expansion (workspace) needs to be
|
|
// done along dimension with size 8.
|
|
//
|
|
func.func @matmul(%A: tensor<8x2xf64, #CSC>,
|
|
%B: tensor<2x4xf64, #CSC>) -> tensor<8x4xf64, #CSC> {
|
|
%C = bufferization.alloc_tensor() : tensor<8x4xf64, #CSC>
|
|
%D = linalg.matmul
|
|
ins(%A, %B: tensor<8x2xf64, #CSC>, tensor<2x4xf64, #CSC>)
|
|
outs(%C: tensor<8x4xf64, #CSC>) -> tensor<8x4xf64, #CSC>
|
|
return %D: tensor<8x4xf64, #CSC>
|
|
}
|
|
|
|
//
|
|
// Main driver.
|
|
//
|
|
func.func @entry() {
|
|
%c0 = arith.constant 0 : index
|
|
%d1 = arith.constant -1.0 : f64
|
|
|
|
// Initialize various dense matrices for stress testing.
|
|
%da = arith.constant dense<[
|
|
[ 1.1, 2.1 ],
|
|
[ 1.2, 2.2 ],
|
|
[ 1.3, 2.3 ],
|
|
[ 1.4, 2.4 ],
|
|
[ 1.5, 2.5 ],
|
|
[ 1.6, 2.6 ],
|
|
[ 1.7, 2.7 ],
|
|
[ 1.8, 2.8 ]
|
|
]> : tensor<8x2xf64>
|
|
%db = arith.constant dense<[
|
|
[ 10.1, 11.1, 12.1, 13.1 ],
|
|
[ 10.2, 11.2, 12.2, 13.2 ]
|
|
]> : tensor<2x4xf64>
|
|
|
|
// Convert all these matrices to sparse format.
|
|
%x1 = sparse_tensor.convert %da : tensor<8x2xf64> to tensor<8x2xf64, #CSC>
|
|
%x2 = sparse_tensor.convert %db : tensor<2x4xf64> to tensor<2x4xf64, #CSC>
|
|
|
|
// Call kernels with dense.
|
|
%x3 = call @matmul(%x1, %x2)
|
|
: (tensor<8x2xf64, #CSC>,
|
|
tensor<2x4xf64, #CSC>) -> tensor<8x4xf64, #CSC>
|
|
|
|
// CHECK: {{\[}}[32.53, 35.73, 38.93, 42.13],
|
|
// CHECK-NEXT: [34.56, 37.96, 41.36, 44.76],
|
|
// CHECK-NEXT: [36.59, 40.19, 43.79, 47.39],
|
|
// CHECK-NEXT: [38.62, 42.42, 46.22, 50.02],
|
|
// CHECK-NEXT: [40.65, 44.65, 48.65, 52.65],
|
|
// CHECK-NEXT: [42.68, 46.88, 51.08, 55.28],
|
|
// CHECK-NEXT: [44.71, 49.11, 53.51, 57.91],
|
|
// CHECK-NEXT: [46.74, 51.34, 55.94, 60.54]]
|
|
//
|
|
%xc = sparse_tensor.convert %x3 : tensor<8x4xf64, #CSC> to tensor<8x4xf64>
|
|
%xu = tensor.cast %xc : tensor<8x4xf64> to tensor<*xf64>
|
|
call @printMemrefF64(%xu) : (tensor<*xf64>) -> ()
|
|
|
|
// Release the resources.
|
|
bufferization.dealloc_tensor %x1 : tensor<8x2xf64, #CSC>
|
|
bufferization.dealloc_tensor %x2 : tensor<2x4xf64, #CSC>
|
|
bufferization.dealloc_tensor %x3 : tensor<8x4xf64, #CSC>
|
|
|
|
return
|
|
}
|
|
}
|