105 lines
3.8 KiB
MLIR
105 lines
3.8 KiB
MLIR
// DEFINE: %{option} = enable-runtime-library=true
|
|
// DEFINE: %{command} = mlir-opt %s --sparse-compiler=%{option} | \
|
|
// DEFINE: TENSOR0="%mlir_src_dir/test/Integration/data/test.tns" \
|
|
// DEFINE: mlir-cpu-runner \
|
|
// DEFINE: -e entry -entry-point-result=void \
|
|
// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext,%mlir_lib_dir/libmlir_runner_utils%shlibext | \
|
|
// DEFINE: FileCheck %s
|
|
//
|
|
// RUN: %{command}
|
|
//
|
|
// Do the same run, but now with direct IR generation.
|
|
// REDEFINE: %{option} = enable-runtime-library=false
|
|
// RUN: %{command}
|
|
//
|
|
// Do the same run, but now with direct IR generation and vectorization.
|
|
// REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
|
|
// RUN: %{command}
|
|
|
|
!Filename = !llvm.ptr<i8>
|
|
|
|
#SparseTensor = #sparse_tensor.encoding<{
|
|
dimLevelType = [ "compressed", "compressed", "compressed", "compressed",
|
|
"compressed", "compressed", "compressed", "compressed" ],
|
|
// Note that any dimOrdering permutation should give the same results
|
|
// since, even though it impacts the sparse storage scheme layout,
|
|
// it should not change the semantics.
|
|
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
|
|
}>
|
|
|
|
#trait_flatten = {
|
|
indexing_maps = [
|
|
affine_map<(i,j,k,l,m,n,o,p) -> (i,j,k,l,m,n,o,p)>, // A
|
|
affine_map<(i,j,k,l,m,n,o,p) -> (i,j)> // X (out)
|
|
],
|
|
iterator_types = [ "parallel", "parallel", "reduction", "reduction",
|
|
"reduction", "reduction", "reduction", "reduction" ],
|
|
doc = "X(i,j) += A(i,j,k,l,m,n,o,p)"
|
|
}
|
|
|
|
//
|
|
// Integration test that lowers a kernel annotated as sparse to
|
|
// actual sparse code, initializes a matching sparse storage scheme
|
|
// from file, and runs the resulting code with the JIT compiler.
|
|
//
|
|
module {
|
|
//
|
|
// A kernel that flattens a rank 8 tensor into a dense matrix.
|
|
//
|
|
func.func @kernel_flatten(%arga: tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor>,
|
|
%argx: tensor<7x3xf64>)
|
|
-> tensor<7x3xf64> {
|
|
%0 = linalg.generic #trait_flatten
|
|
ins(%arga: tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor>)
|
|
outs(%argx: tensor<7x3xf64>) {
|
|
^bb(%a: f64, %x: f64):
|
|
%0 = arith.addf %x, %a : f64
|
|
linalg.yield %0 : f64
|
|
} -> tensor<7x3xf64>
|
|
return %0 : tensor<7x3xf64>
|
|
}
|
|
|
|
func.func private @getTensorFilename(index) -> (!Filename)
|
|
func.func private @printMemrefF64(%ptr : tensor<*xf64>)
|
|
|
|
//
|
|
// Main driver that reads tensor from file and calls the sparse kernel.
|
|
//
|
|
func.func @entry() {
|
|
%d0 = arith.constant 0.0 : f64
|
|
%c0 = arith.constant 0 : index
|
|
%c1 = arith.constant 1 : index
|
|
%c3 = arith.constant 3 : index
|
|
%c7 = arith.constant 7 : index
|
|
|
|
// Setup matrix memory that is initialized to zero.
|
|
%x = arith.constant dense<0.000000e+00> : tensor<7x3xf64>
|
|
|
|
// Read the sparse tensor from file, construct sparse storage.
|
|
%fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
|
|
%a = sparse_tensor.new %fileName : !Filename to tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor>
|
|
|
|
// Call the kernel.
|
|
%0 = call @kernel_flatten(%a, %x)
|
|
: (tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor>, tensor<7x3xf64>) -> tensor<7x3xf64>
|
|
|
|
// Print the result for verification.
|
|
//
|
|
// CHECK: {{\[}}[6.25, 0, 0],
|
|
// CHECK-NEXT: [4.224, 6.21, 0],
|
|
// CHECK-NEXT: [0, 0, 15.455],
|
|
// CHECK-NEXT: [0, 0, 0],
|
|
// CHECK-NEXT: [0, 0, 0],
|
|
// CHECK-NEXT: [0, 0, 0],
|
|
// CHECK-NEXT: [7, 0, 0]]
|
|
//
|
|
%1 = tensor.cast %0 : tensor<7x3xf64> to tensor<*xf64>
|
|
call @printMemrefF64(%1) : (tensor<*xf64>) -> ()
|
|
|
|
// Release the resources.
|
|
bufferization.dealloc_tensor %a : tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor>
|
|
|
|
return
|
|
}
|
|
}
|