314 lines
12 KiB
MLIR
314 lines
12 KiB
MLIR
// DEFINE: %{option} = enable-runtime-library=true
|
|
// DEFINE: %{command} = mlir-opt %s --sparse-compiler=%{option} | \
|
|
// DEFINE: mlir-cpu-runner \
|
|
// DEFINE: -e entry -entry-point-result=void \
|
|
// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext,%mlir_lib_dir/libmlir_runner_utils%shlibext | \
|
|
// DEFINE: FileCheck %s
|
|
//
|
|
// RUN: %{command}
|
|
//
|
|
// Do the same run, but now with direct IR generation.
|
|
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true"
|
|
// RUN: %{command}
|
|
//
|
|
// Do the same run, but now with parallelization strategy.
|
|
// REDEFINE: %{option} = "enable-runtime-library=true parallelization-strategy=any-storage-any-loop"
|
|
// RUN: %{command}
|
|
//
|
|
// Do the same run, but now with direct IR generation and parallelization strategy.
|
|
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true parallelization-strategy=any-storage-any-loop"
|
|
// RUN: %{command}
|
|
//
|
|
// Do the same run, but now with direct IR generation and vectorization.
|
|
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
|
|
// RUN: %{command}
|
|
|
|
#CSR = #sparse_tensor.encoding<{
|
|
dimLevelType = [ "dense", "compressed" ],
|
|
dimOrdering = affine_map<(i,j) -> (i,j)>
|
|
}>
|
|
|
|
#DCSR = #sparse_tensor.encoding<{
|
|
dimLevelType = [ "compressed", "compressed" ],
|
|
dimOrdering = affine_map<(i,j) -> (i,j)>
|
|
}>
|
|
|
|
module {
|
|
func.func private @printMemrefF64(%ptr : tensor<*xf64>)
|
|
func.func private @printMemref1dF64(%ptr : memref<?xf64>) attributes { llvm.emit_c_interface }
|
|
|
|
//
|
|
// Computes C = A x B with all matrices dense.
|
|
//
|
|
func.func @matmul1(%A: tensor<4x8xf64>, %B: tensor<8x4xf64>,
|
|
%C: tensor<4x4xf64>) -> tensor<4x4xf64> {
|
|
%D = linalg.matmul
|
|
ins(%A, %B: tensor<4x8xf64>, tensor<8x4xf64>)
|
|
outs(%C: tensor<4x4xf64>) -> tensor<4x4xf64>
|
|
return %D: tensor<4x4xf64>
|
|
}
|
|
|
|
//
|
|
// Computes C = A x B with all matrices sparse (SpMSpM) in CSR.
|
|
//
|
|
func.func @matmul2(%A: tensor<4x8xf64, #CSR>,
|
|
%B: tensor<8x4xf64, #CSR>) -> tensor<4x4xf64, #CSR> {
|
|
%C = bufferization.alloc_tensor() : tensor<4x4xf64, #CSR>
|
|
%D = linalg.matmul
|
|
ins(%A, %B: tensor<4x8xf64, #CSR>, tensor<8x4xf64, #CSR>)
|
|
outs(%C: tensor<4x4xf64, #CSR>) -> tensor<4x4xf64, #CSR>
|
|
return %D: tensor<4x4xf64, #CSR>
|
|
}
|
|
|
|
//
|
|
// Computes C = A x B with all matrices sparse (SpMSpM) in DCSR.
|
|
//
|
|
func.func @matmul3(%A: tensor<4x8xf64, #DCSR>,
|
|
%B: tensor<8x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> {
|
|
%C = bufferization.alloc_tensor() : tensor<4x4xf64, #DCSR>
|
|
%D = linalg.matmul
|
|
ins(%A, %B: tensor<4x8xf64, #DCSR>, tensor<8x4xf64, #DCSR>)
|
|
outs(%C: tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR>
|
|
return %D: tensor<4x4xf64, #DCSR>
|
|
}
|
|
|
|
//
|
|
// Main driver.
|
|
//
|
|
func.func @entry() {
|
|
%c0 = arith.constant 0 : index
|
|
|
|
// Initialize various matrices, dense for stress testing,
|
|
// and sparse to verify correct nonzero structure.
|
|
%da = arith.constant dense<[
|
|
[ 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1 ],
|
|
[ 1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2 ],
|
|
[ 1.3, 2.3, 3.3, 4.3, 5.3, 6.3, 7.3, 8.3 ],
|
|
[ 1.4, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4, 8.4 ]
|
|
]> : tensor<4x8xf64>
|
|
%db = arith.constant dense<[
|
|
[ 10.1, 11.1, 12.1, 13.1 ],
|
|
[ 10.2, 11.2, 12.2, 13.2 ],
|
|
[ 10.3, 11.3, 12.3, 13.3 ],
|
|
[ 10.4, 11.4, 12.4, 13.4 ],
|
|
[ 10.5, 11.5, 12.5, 13.5 ],
|
|
[ 10.6, 11.6, 12.6, 13.6 ],
|
|
[ 10.7, 11.7, 12.7, 13.7 ],
|
|
[ 10.8, 11.8, 12.8, 13.8 ]
|
|
]> : tensor<8x4xf64>
|
|
%sa = arith.constant dense<[
|
|
[ 0.0, 2.1, 0.0, 0.0, 0.0, 6.1, 0.0, 0.0 ],
|
|
[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ],
|
|
[ 0.0, 2.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ],
|
|
[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0 ]
|
|
]> : tensor<4x8xf64>
|
|
%sb = arith.constant dense<[
|
|
[ 0.0, 0.0, 0.0, 1.0 ],
|
|
[ 0.0, 0.0, 2.0, 0.0 ],
|
|
[ 0.0, 3.0, 0.0, 0.0 ],
|
|
[ 4.0, 0.0, 0.0, 0.0 ],
|
|
[ 0.0, 0.0, 0.0, 0.0 ],
|
|
[ 0.0, 5.0, 0.0, 0.0 ],
|
|
[ 0.0, 0.0, 6.0, 0.0 ],
|
|
[ 0.0, 0.0, 7.0, 8.0 ]
|
|
]> : tensor<8x4xf64>
|
|
%zero = arith.constant dense<0.0> : tensor<4x4xf64>
|
|
|
|
// Convert all these matrices to sparse format.
|
|
%a1 = sparse_tensor.convert %da : tensor<4x8xf64> to tensor<4x8xf64, #CSR>
|
|
%a2 = sparse_tensor.convert %da : tensor<4x8xf64> to tensor<4x8xf64, #DCSR>
|
|
%a3 = sparse_tensor.convert %sa : tensor<4x8xf64> to tensor<4x8xf64, #CSR>
|
|
%a4 = sparse_tensor.convert %sa : tensor<4x8xf64> to tensor<4x8xf64, #DCSR>
|
|
%b1 = sparse_tensor.convert %db : tensor<8x4xf64> to tensor<8x4xf64, #CSR>
|
|
%b2 = sparse_tensor.convert %db : tensor<8x4xf64> to tensor<8x4xf64, #DCSR>
|
|
%b3 = sparse_tensor.convert %sb : tensor<8x4xf64> to tensor<8x4xf64, #CSR>
|
|
%b4 = sparse_tensor.convert %sb : tensor<8x4xf64> to tensor<8x4xf64, #DCSR>
|
|
|
|
//
|
|
// Sanity check on stored entries before going into the computations.
|
|
//
|
|
// CHECK: 32
|
|
// CHECK-NEXT: 32
|
|
// CHECK-NEXT: 4
|
|
// CHECK-NEXT: 4
|
|
// CHECK-NEXT: 32
|
|
// CHECK-NEXT: 32
|
|
// CHECK-NEXT: 8
|
|
// CHECK-NEXT: 8
|
|
//
|
|
%noea1 = sparse_tensor.number_of_entries %a1 : tensor<4x8xf64, #CSR>
|
|
%noea2 = sparse_tensor.number_of_entries %a2 : tensor<4x8xf64, #DCSR>
|
|
%noea3 = sparse_tensor.number_of_entries %a3 : tensor<4x8xf64, #CSR>
|
|
%noea4 = sparse_tensor.number_of_entries %a4 : tensor<4x8xf64, #DCSR>
|
|
%noeb1 = sparse_tensor.number_of_entries %b1 : tensor<8x4xf64, #CSR>
|
|
%noeb2 = sparse_tensor.number_of_entries %b2 : tensor<8x4xf64, #DCSR>
|
|
%noeb3 = sparse_tensor.number_of_entries %b3 : tensor<8x4xf64, #CSR>
|
|
%noeb4 = sparse_tensor.number_of_entries %b4 : tensor<8x4xf64, #DCSR>
|
|
vector.print %noea1 : index
|
|
vector.print %noea2 : index
|
|
vector.print %noea3 : index
|
|
vector.print %noea4 : index
|
|
vector.print %noeb1 : index
|
|
vector.print %noeb2 : index
|
|
vector.print %noeb3 : index
|
|
vector.print %noeb4 : index
|
|
|
|
// Call kernels with dense.
|
|
%0 = call @matmul1(%da, %db, %zero)
|
|
: (tensor<4x8xf64>, tensor<8x4xf64>, tensor<4x4xf64>) -> tensor<4x4xf64>
|
|
%1 = call @matmul2(%a1, %b1)
|
|
: (tensor<4x8xf64, #CSR>,
|
|
tensor<8x4xf64, #CSR>) -> tensor<4x4xf64, #CSR>
|
|
%2 = call @matmul3(%a2, %b2)
|
|
: (tensor<4x8xf64, #DCSR>,
|
|
tensor<8x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR>
|
|
|
|
// Call kernels with one sparse.
|
|
%3 = call @matmul1(%sa, %db, %zero)
|
|
: (tensor<4x8xf64>, tensor<8x4xf64>, tensor<4x4xf64>) -> tensor<4x4xf64>
|
|
%4 = call @matmul2(%a3, %b1)
|
|
: (tensor<4x8xf64, #CSR>,
|
|
tensor<8x4xf64, #CSR>) -> tensor<4x4xf64, #CSR>
|
|
%5 = call @matmul3(%a4, %b2)
|
|
: (tensor<4x8xf64, #DCSR>,
|
|
tensor<8x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR>
|
|
|
|
// Call kernels with sparse.
|
|
%6 = call @matmul1(%sa, %sb, %zero)
|
|
: (tensor<4x8xf64>, tensor<8x4xf64>, tensor<4x4xf64>) -> tensor<4x4xf64>
|
|
%7 = call @matmul2(%a3, %b3)
|
|
: (tensor<4x8xf64, #CSR>,
|
|
tensor<8x4xf64, #CSR>) -> tensor<4x4xf64, #CSR>
|
|
%8 = call @matmul3(%a4, %b4)
|
|
: (tensor<4x8xf64, #DCSR>,
|
|
tensor<8x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR>
|
|
|
|
//
|
|
// CHECK: {{\[}}[388.76, 425.56, 462.36, 499.16],
|
|
// CHECK-NEXT: [397.12, 434.72, 472.32, 509.92],
|
|
// CHECK-NEXT: [405.48, 443.88, 482.28, 520.68],
|
|
// CHECK-NEXT: [413.84, 453.04, 492.24, 531.44]]
|
|
//
|
|
%u0 = tensor.cast %0 : tensor<4x4xf64> to tensor<*xf64>
|
|
call @printMemrefF64(%u0) : (tensor<*xf64>) -> ()
|
|
|
|
//
|
|
// CHECK: {{\[}}[388.76, 425.56, 462.36, 499.16],
|
|
// CHECK-NEXT: [397.12, 434.72, 472.32, 509.92],
|
|
// CHECK-NEXT: [405.48, 443.88, 482.28, 520.68],
|
|
// CHECK-NEXT: [413.84, 453.04, 492.24, 531.44]]
|
|
//
|
|
%c1 = sparse_tensor.convert %1 : tensor<4x4xf64, #CSR> to tensor<4x4xf64>
|
|
%c1u = tensor.cast %c1 : tensor<4x4xf64> to tensor<*xf64>
|
|
call @printMemrefF64(%c1u) : (tensor<*xf64>) -> ()
|
|
|
|
//
|
|
// CHECK: {{\[}}[388.76, 425.56, 462.36, 499.16],
|
|
// CHECK-NEXT: [397.12, 434.72, 472.32, 509.92],
|
|
// CHECK-NEXT: [405.48, 443.88, 482.28, 520.68],
|
|
// CHECK-NEXT: [413.84, 453.04, 492.24, 531.44]]
|
|
//
|
|
%c2 = sparse_tensor.convert %2 : tensor<4x4xf64, #DCSR> to tensor<4x4xf64>
|
|
%c2u = tensor.cast %c2 : tensor<4x4xf64> to tensor<*xf64>
|
|
call @printMemrefF64(%c2u) : (tensor<*xf64>) -> ()
|
|
|
|
//
|
|
// CHECK: {{\[}}[86.08, 94.28, 102.48, 110.68],
|
|
// CHECK-NEXT: [0, 0, 0, 0],
|
|
// CHECK-NEXT: [23.46, 25.76, 28.06, 30.36],
|
|
// CHECK-NEXT: [10.8, 11.8, 12.8, 13.8]]
|
|
//
|
|
%u3 = tensor.cast %3 : tensor<4x4xf64> to tensor<*xf64>
|
|
call @printMemrefF64(%u3) : (tensor<*xf64>) -> ()
|
|
|
|
//
|
|
// CHECK: {{\[}}[86.08, 94.28, 102.48, 110.68],
|
|
// CHECK-NEXT: [0, 0, 0, 0],
|
|
// CHECK-NEXT: [23.46, 25.76, 28.06, 30.36],
|
|
// CHECK-NEXT: [10.8, 11.8, 12.8, 13.8]]
|
|
//
|
|
%c4 = sparse_tensor.convert %4 : tensor<4x4xf64, #CSR> to tensor<4x4xf64>
|
|
%c4u = tensor.cast %c4 : tensor<4x4xf64> to tensor<*xf64>
|
|
call @printMemrefF64(%c4u) : (tensor<*xf64>) -> ()
|
|
|
|
//
|
|
// CHECK: {{\[}}[86.08, 94.28, 102.48, 110.68],
|
|
// CHECK-NEXT: [0, 0, 0, 0],
|
|
// CHECK-NEXT: [23.46, 25.76, 28.06, 30.36],
|
|
// CHECK-NEXT: [10.8, 11.8, 12.8, 13.8]]
|
|
//
|
|
%c5 = sparse_tensor.convert %5 : tensor<4x4xf64, #DCSR> to tensor<4x4xf64>
|
|
%c5u = tensor.cast %c5 : tensor<4x4xf64> to tensor<*xf64>
|
|
call @printMemrefF64(%c5u) : (tensor<*xf64>) -> ()
|
|
|
|
//
|
|
// CHECK: {{\[}}[0, 30.5, 4.2, 0],
|
|
// CHECK-NEXT: [0, 0, 0, 0],
|
|
// CHECK-NEXT: [0, 0, 4.6, 0],
|
|
// CHECK-NEXT: [0, 0, 7, 8]]
|
|
//
|
|
%u6 = tensor.cast %6 : tensor<4x4xf64> to tensor<*xf64>
|
|
call @printMemrefF64(%u6) : (tensor<*xf64>) -> ()
|
|
|
|
//
|
|
// CHECK: {{\[}}[0, 30.5, 4.2, 0],
|
|
// CHECK-NEXT: [0, 0, 0, 0],
|
|
// CHECK-NEXT: [0, 0, 4.6, 0],
|
|
// CHECK-NEXT: [0, 0, 7, 8]]
|
|
//
|
|
%c7 = sparse_tensor.convert %7 : tensor<4x4xf64, #CSR> to tensor<4x4xf64>
|
|
%c7u = tensor.cast %c7 : tensor<4x4xf64> to tensor<*xf64>
|
|
call @printMemrefF64(%c7u) : (tensor<*xf64>) -> ()
|
|
|
|
//
|
|
// CHECK: {{\[}}[0, 30.5, 4.2, 0],
|
|
// CHECK-NEXT: [0, 0, 0, 0],
|
|
// CHECK-NEXT: [0, 0, 4.6, 0],
|
|
// CHECK-NEXT: [0, 0, 7, 8]]
|
|
//
|
|
%c8 = sparse_tensor.convert %8 : tensor<4x4xf64, #DCSR> to tensor<4x4xf64>
|
|
%c8u = tensor.cast %c8 : tensor<4x4xf64> to tensor<*xf64>
|
|
call @printMemrefF64(%c8u) : (tensor<*xf64>) -> ()
|
|
|
|
//
|
|
// Sanity check on nonzeros.
|
|
//
|
|
// CHECK: [30.5, 4.2, 4.6, 7, 8
|
|
// CHECK: [30.5, 4.2, 4.6, 7, 8
|
|
//
|
|
%val7 = sparse_tensor.values %7 : tensor<4x4xf64, #CSR> to memref<?xf64>
|
|
%val8 = sparse_tensor.values %8 : tensor<4x4xf64, #DCSR> to memref<?xf64>
|
|
call @printMemref1dF64(%val7) : (memref<?xf64>) -> ()
|
|
call @printMemref1dF64(%val8) : (memref<?xf64>) -> ()
|
|
|
|
//
|
|
// Sanity check on stored entries after the computations.
|
|
//
|
|
// CHECK-NEXT: 5
|
|
// CHECK-NEXT: 5
|
|
//
|
|
%noe7 = sparse_tensor.number_of_entries %7 : tensor<4x4xf64, #CSR>
|
|
%noe8 = sparse_tensor.number_of_entries %8 : tensor<4x4xf64, #DCSR>
|
|
vector.print %noe7 : index
|
|
vector.print %noe8 : index
|
|
|
|
// Release the resources.
|
|
bufferization.dealloc_tensor %a1 : tensor<4x8xf64, #CSR>
|
|
bufferization.dealloc_tensor %a2 : tensor<4x8xf64, #DCSR>
|
|
bufferization.dealloc_tensor %a3 : tensor<4x8xf64, #CSR>
|
|
bufferization.dealloc_tensor %a4 : tensor<4x8xf64, #DCSR>
|
|
bufferization.dealloc_tensor %b1 : tensor<8x4xf64, #CSR>
|
|
bufferization.dealloc_tensor %b2 : tensor<8x4xf64, #DCSR>
|
|
bufferization.dealloc_tensor %b3 : tensor<8x4xf64, #CSR>
|
|
bufferization.dealloc_tensor %b4 : tensor<8x4xf64, #DCSR>
|
|
bufferization.dealloc_tensor %1 : tensor<4x4xf64, #CSR>
|
|
bufferization.dealloc_tensor %2 : tensor<4x4xf64, #DCSR>
|
|
bufferization.dealloc_tensor %4 : tensor<4x4xf64, #CSR>
|
|
bufferization.dealloc_tensor %5 : tensor<4x4xf64, #DCSR>
|
|
bufferization.dealloc_tensor %7 : tensor<4x4xf64, #CSR>
|
|
bufferization.dealloc_tensor %8 : tensor<4x4xf64, #DCSR>
|
|
|
|
return
|
|
}
|
|
}
|