Files
clang-p2996/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_tanh.mlir
2022-12-14 15:06:34 -08:00

88 lines
3.2 KiB
MLIR

// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{command} = mlir-opt %s --sparse-compiler=%{option} | \
// DEFINE: mlir-cpu-runner \
// DEFINE: -e entry -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \
// DEFINE: FileCheck %s
//
// RUN: %{command}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = enable-runtime-library=false
// RUN: %{command}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{command}
#SparseVector = #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>
#trait_op = {
indexing_maps = [
affine_map<(i) -> (i)> // X (out)
],
iterator_types = ["parallel"],
doc = "X(i) = OP X(i)"
}
module {
// Performs zero-preserving math to sparse vector.
func.func @sparse_tanh(%vec: tensor<?xf64, #SparseVector>)
-> tensor<?xf64, #SparseVector> {
%0 = linalg.generic #trait_op
outs(%vec: tensor<?xf64, #SparseVector>) {
^bb(%x: f64):
%1 = math.tanh %x : f64
linalg.yield %1 : f64
} -> tensor<?xf64, #SparseVector>
return %0 : tensor<?xf64, #SparseVector>
}
// Dumps a sparse vector of type f64.
func.func @dump_vec_f64(%arg0: tensor<?xf64, #SparseVector>) {
// Dump the values array to verify only sparse contents are stored.
%c0 = arith.constant 0 : index
%d0 = arith.constant -1.0 : f64
%n = sparse_tensor.number_of_entries %arg0: tensor<?xf64, #SparseVector>
vector.print %n : index
%0 = sparse_tensor.values %arg0
: tensor<?xf64, #SparseVector> to memref<?xf64>
%1 = vector.transfer_read %0[%c0], %d0: memref<?xf64>, vector<9xf64>
vector.print %1 : vector<9xf64>
// Dump the dense vector to verify structure is correct.
%dv = sparse_tensor.convert %arg0
: tensor<?xf64, #SparseVector> to tensor<?xf64>
%3 = vector.transfer_read %dv[%c0], %d0: tensor<?xf64>, vector<32xf64>
vector.print %3 : vector<32xf64>
return
}
// Driver method to call and verify vector kernels.
func.func @entry() {
// Setup sparse vector.
%v1 = arith.constant sparse<
[ [0], [3], [11], [17], [20], [21], [28], [29], [31] ],
[ -1.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100.0 ]
> : tensor<32xf64>
%sv1 = sparse_tensor.convert %v1
: tensor<32xf64> to tensor<?xf64, #SparseVector>
// Call sparse vector kernel.
%0 = call @sparse_tanh(%sv1) : (tensor<?xf64, #SparseVector>)
-> tensor<?xf64, #SparseVector>
//
// Verify the results (within some precision).
//
// CHECK: 9
// CHECK-NEXT: {{( -0.761[0-9]*, 0.761[0-9]*, 0.96[0-9]*, 0.99[0-9]*, 0.99[0-9]*, 0.99[0-9]*, 0.99[0-9]*, 0.99[0-9]*, 1 )}}
// CHECK-NEXT: {{( -0.761[0-9]*, 0, 0, 0.761[0-9]*, 0, 0, 0, 0, 0, 0, 0, 0.96[0-9]*, 0, 0, 0, 0, 0, 0.99[0-9]*, 0, 0, 0.99[0-9]*, 0.99[0-9]*, 0, 0, 0, 0, 0, 0, 0.99[0-9]*, 0.99[0-9]*, 0, 1 )}}
//
call @dump_vec_f64(%0) : (tensor<?xf64, #SparseVector>) -> ()
// Release the resources.
bufferization.dealloc_tensor %sv1 : tensor<?xf64, #SparseVector>
return
}
}