Run sparse_tanh with vectorization. Reviewed By: aartbik Differential Revision: https://reviews.llvm.org/D139958
88 lines
3.2 KiB
MLIR
88 lines
3.2 KiB
MLIR
// DEFINE: %{option} = enable-runtime-library=true
|
|
// DEFINE: %{command} = mlir-opt %s --sparse-compiler=%{option} | \
|
|
// DEFINE: mlir-cpu-runner \
|
|
// DEFINE: -e entry -entry-point-result=void \
|
|
// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \
|
|
// DEFINE: FileCheck %s
|
|
//
|
|
// RUN: %{command}
|
|
//
|
|
// Do the same run, but now with direct IR generation.
|
|
// REDEFINE: %{option} = enable-runtime-library=false
|
|
// RUN: %{command}
|
|
//
|
|
// Do the same run, but now with direct IR generation and vectorization.
|
|
// REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
|
|
// RUN: %{command}
|
|
|
|
#SparseVector = #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>
|
|
|
|
#trait_op = {
|
|
indexing_maps = [
|
|
affine_map<(i) -> (i)> // X (out)
|
|
],
|
|
iterator_types = ["parallel"],
|
|
doc = "X(i) = OP X(i)"
|
|
}
|
|
|
|
module {
|
|
// Performs zero-preserving math to sparse vector.
|
|
func.func @sparse_tanh(%vec: tensor<?xf64, #SparseVector>)
|
|
-> tensor<?xf64, #SparseVector> {
|
|
%0 = linalg.generic #trait_op
|
|
outs(%vec: tensor<?xf64, #SparseVector>) {
|
|
^bb(%x: f64):
|
|
%1 = math.tanh %x : f64
|
|
linalg.yield %1 : f64
|
|
} -> tensor<?xf64, #SparseVector>
|
|
return %0 : tensor<?xf64, #SparseVector>
|
|
}
|
|
|
|
// Dumps a sparse vector of type f64.
|
|
func.func @dump_vec_f64(%arg0: tensor<?xf64, #SparseVector>) {
|
|
// Dump the values array to verify only sparse contents are stored.
|
|
%c0 = arith.constant 0 : index
|
|
%d0 = arith.constant -1.0 : f64
|
|
%n = sparse_tensor.number_of_entries %arg0: tensor<?xf64, #SparseVector>
|
|
vector.print %n : index
|
|
%0 = sparse_tensor.values %arg0
|
|
: tensor<?xf64, #SparseVector> to memref<?xf64>
|
|
%1 = vector.transfer_read %0[%c0], %d0: memref<?xf64>, vector<9xf64>
|
|
vector.print %1 : vector<9xf64>
|
|
// Dump the dense vector to verify structure is correct.
|
|
%dv = sparse_tensor.convert %arg0
|
|
: tensor<?xf64, #SparseVector> to tensor<?xf64>
|
|
%3 = vector.transfer_read %dv[%c0], %d0: tensor<?xf64>, vector<32xf64>
|
|
vector.print %3 : vector<32xf64>
|
|
return
|
|
}
|
|
|
|
// Driver method to call and verify vector kernels.
|
|
func.func @entry() {
|
|
// Setup sparse vector.
|
|
%v1 = arith.constant sparse<
|
|
[ [0], [3], [11], [17], [20], [21], [28], [29], [31] ],
|
|
[ -1.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100.0 ]
|
|
> : tensor<32xf64>
|
|
%sv1 = sparse_tensor.convert %v1
|
|
: tensor<32xf64> to tensor<?xf64, #SparseVector>
|
|
|
|
// Call sparse vector kernel.
|
|
%0 = call @sparse_tanh(%sv1) : (tensor<?xf64, #SparseVector>)
|
|
-> tensor<?xf64, #SparseVector>
|
|
|
|
//
|
|
// Verify the results (within some precision).
|
|
//
|
|
// CHECK: 9
|
|
// CHECK-NEXT: {{( -0.761[0-9]*, 0.761[0-9]*, 0.96[0-9]*, 0.99[0-9]*, 0.99[0-9]*, 0.99[0-9]*, 0.99[0-9]*, 0.99[0-9]*, 1 )}}
|
|
// CHECK-NEXT: {{( -0.761[0-9]*, 0, 0, 0.761[0-9]*, 0, 0, 0, 0, 0, 0, 0, 0.96[0-9]*, 0, 0, 0, 0, 0, 0.99[0-9]*, 0, 0, 0.99[0-9]*, 0.99[0-9]*, 0, 0, 0, 0, 0, 0, 0.99[0-9]*, 0.99[0-9]*, 0, 1 )}}
|
|
//
|
|
call @dump_vec_f64(%0) : (tensor<?xf64, #SparseVector>) -> ()
|
|
|
|
// Release the resources.
|
|
bufferization.dealloc_tensor %sv1 : tensor<?xf64, #SparseVector>
|
|
return
|
|
}
|
|
}
|