Files
clang-p2996/mlir/test/Integration/Dialect/SparseTensor/python/test_output.py
Aart Bik c48e90877f [mlir][sparse] introduce a higher-order tensor mapping
This extension to the sparse tensor type system in MLIR
opens up a whole new set of sparse storage schemes, such as
block sparse storage (e.g. BCSR) and ELL (aka jagged diagonals).

This revision merely introduces the type extension and
initial documentation. The actual interpretation of the type
(reading in tensors, lowering to code, etc.) will follow.

Reviewed By: Peiming

Differential Revision: https://reviews.llvm.org/D135206
2022-10-05 09:40:51 -07:00

102 lines
2.9 KiB
Python

# RUN: SUPPORT_LIB=%mlir_lib_dir/libmlir_c_runner_utils%shlibext \
# RUN: %PYTHON %s | FileCheck %s
import ctypes
import os
import sys
import tempfile
from mlir import ir
from mlir import runtime as rt
from mlir.dialects import builtin
from mlir.dialects import sparse_tensor as st
_SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
sys.path.append(_SCRIPT_PATH)
from tools import sparse_compiler
# TODO: move more into actual IR building.
def boilerplate(attr: st.EncodingAttr):
"""Returns boilerplate main method."""
return f"""
func.func @main(%p : !llvm.ptr<i8>) -> () attributes {{ llvm.emit_c_interface }} {{
%d = arith.constant sparse<[[0, 0], [1, 1], [0, 9], [9, 0], [4, 4]],
[1.0, 2.0, 3.0, 4.0, 5.0]> : tensor<10x10xf64>
%a = sparse_tensor.convert %d : tensor<10x10xf64> to tensor<10x10xf64, {attr}>
sparse_tensor.out %a, %p : tensor<10x10xf64, {attr}>, !llvm.ptr<i8>
return
}}
"""
def expected():
"""Returns expected contents of output.
Regardless of the dimension ordering, compression, and bitwidths that are
used in the sparse tensor, the output is always lexicographically sorted
by natural index order.
"""
return f"""; extended FROSTT format
2 5
10 10
1 1 1
1 10 3
2 2 2
5 5 5
10 1 4
"""
def build_compile_and_run_output(attr: st.EncodingAttr, compiler):
# Build and Compile.
module = ir.Module.parse(boilerplate(attr))
engine = compiler.compile_and_jit(module)
# Invoke the kernel and compare output.
with tempfile.TemporaryDirectory() as test_dir:
out = os.path.join(test_dir, 'out.tns')
buf = out.encode('utf-8')
mem_a = ctypes.pointer(ctypes.pointer(ctypes.create_string_buffer(buf)))
engine.invoke('main', mem_a)
actual = open(out).read()
if actual != expected():
quit('FAILURE')
def main():
support_lib = os.getenv('SUPPORT_LIB')
assert support_lib is not None, 'SUPPORT_LIB is undefined'
if not os.path.exists(support_lib):
raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT),
support_lib)
# CHECK-LABEL: TEST: test_output
print('\nTEST: test_output')
count = 0
with ir.Context() as ctx, ir.Location.unknown():
# Loop over various sparse types: CSR, DCSR, CSC, DCSC.
levels = [[st.DimLevelType.dense, st.DimLevelType.compressed],
[st.DimLevelType.compressed, st.DimLevelType.compressed]]
orderings = [
ir.AffineMap.get_permutation([0, 1]),
ir.AffineMap.get_permutation([1, 0])
]
bitwidths = [8, 16, 32, 64]
compiler = sparse_compiler.SparseCompiler(
options='', opt_level=2, shared_libs=[support_lib])
for level in levels:
for ordering in orderings:
for bwidth in bitwidths:
attr = st.EncodingAttr.get(level, ordering, None, bwidth, bwidth)
build_compile_and_run_output(attr, compiler)
count = count + 1
# CHECK: Passed 16 tests
print('Passed', count, 'tests')
if __name__ == '__main__':
main()