This extension to the sparse tensor type system in MLIR opens up a whole new set of sparse storage schemes, such as block sparse storage (e.g. BCSR) and ELL (aka jagged diagonals). This revision merely introduces the type extension and initial documentation. The actual interpretation of the type (reading in tensors, lowering to code, etc.) will follow. Reviewed By: Peiming Differential Revision: https://reviews.llvm.org/D135206
102 lines
2.9 KiB
Python
102 lines
2.9 KiB
Python
# RUN: SUPPORT_LIB=%mlir_lib_dir/libmlir_c_runner_utils%shlibext \
|
|
# RUN: %PYTHON %s | FileCheck %s
|
|
|
|
import ctypes
|
|
import os
|
|
import sys
|
|
import tempfile
|
|
|
|
from mlir import ir
|
|
from mlir import runtime as rt
|
|
|
|
from mlir.dialects import builtin
|
|
from mlir.dialects import sparse_tensor as st
|
|
|
|
_SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
|
|
sys.path.append(_SCRIPT_PATH)
|
|
from tools import sparse_compiler
|
|
|
|
# TODO: move more into actual IR building.
|
|
def boilerplate(attr: st.EncodingAttr):
|
|
"""Returns boilerplate main method."""
|
|
return f"""
|
|
func.func @main(%p : !llvm.ptr<i8>) -> () attributes {{ llvm.emit_c_interface }} {{
|
|
%d = arith.constant sparse<[[0, 0], [1, 1], [0, 9], [9, 0], [4, 4]],
|
|
[1.0, 2.0, 3.0, 4.0, 5.0]> : tensor<10x10xf64>
|
|
%a = sparse_tensor.convert %d : tensor<10x10xf64> to tensor<10x10xf64, {attr}>
|
|
sparse_tensor.out %a, %p : tensor<10x10xf64, {attr}>, !llvm.ptr<i8>
|
|
return
|
|
}}
|
|
"""
|
|
|
|
|
|
def expected():
|
|
"""Returns expected contents of output.
|
|
|
|
Regardless of the dimension ordering, compression, and bitwidths that are
|
|
used in the sparse tensor, the output is always lexicographically sorted
|
|
by natural index order.
|
|
"""
|
|
return f"""; extended FROSTT format
|
|
2 5
|
|
10 10
|
|
1 1 1
|
|
1 10 3
|
|
2 2 2
|
|
5 5 5
|
|
10 1 4
|
|
"""
|
|
|
|
|
|
def build_compile_and_run_output(attr: st.EncodingAttr, compiler):
|
|
# Build and Compile.
|
|
module = ir.Module.parse(boilerplate(attr))
|
|
engine = compiler.compile_and_jit(module)
|
|
|
|
# Invoke the kernel and compare output.
|
|
with tempfile.TemporaryDirectory() as test_dir:
|
|
out = os.path.join(test_dir, 'out.tns')
|
|
buf = out.encode('utf-8')
|
|
mem_a = ctypes.pointer(ctypes.pointer(ctypes.create_string_buffer(buf)))
|
|
engine.invoke('main', mem_a)
|
|
|
|
actual = open(out).read()
|
|
if actual != expected():
|
|
quit('FAILURE')
|
|
|
|
|
|
def main():
|
|
support_lib = os.getenv('SUPPORT_LIB')
|
|
assert support_lib is not None, 'SUPPORT_LIB is undefined'
|
|
if not os.path.exists(support_lib):
|
|
raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT),
|
|
support_lib)
|
|
|
|
# CHECK-LABEL: TEST: test_output
|
|
print('\nTEST: test_output')
|
|
count = 0
|
|
with ir.Context() as ctx, ir.Location.unknown():
|
|
# Loop over various sparse types: CSR, DCSR, CSC, DCSC.
|
|
levels = [[st.DimLevelType.dense, st.DimLevelType.compressed],
|
|
[st.DimLevelType.compressed, st.DimLevelType.compressed]]
|
|
orderings = [
|
|
ir.AffineMap.get_permutation([0, 1]),
|
|
ir.AffineMap.get_permutation([1, 0])
|
|
]
|
|
bitwidths = [8, 16, 32, 64]
|
|
compiler = sparse_compiler.SparseCompiler(
|
|
options='', opt_level=2, shared_libs=[support_lib])
|
|
for level in levels:
|
|
for ordering in orderings:
|
|
for bwidth in bitwidths:
|
|
attr = st.EncodingAttr.get(level, ordering, None, bwidth, bwidth)
|
|
build_compile_and_run_output(attr, compiler)
|
|
count = count + 1
|
|
|
|
# CHECK: Passed 16 tests
|
|
print('Passed', count, 'tests')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|