The old replacements will be removed soon: - `%linalg_test_lib_dir` - `%cuda_wrapper_library_dir` - `%spirv_wrapper_library_dir` - `%vulkan_wrapper_library_dir` - `%mlir_runner_utils_dir` - `%mlir_integration_test_dir` Reviewed By: herhut Differential Revision: https://reviews.llvm.org/D133270
59 lines
1.8 KiB
Python
59 lines
1.8 KiB
Python
# RUN: SUPPORTLIB=%mlir_lib_dir/libmlir_c_runner_utils%shlibext %PYTHON %s | FileCheck %s
|
|
|
|
import filecmp
|
|
import numpy as np
|
|
import os
|
|
import sys
|
|
import tempfile
|
|
|
|
_SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
|
|
sys.path.append(_SCRIPT_PATH)
|
|
|
|
from tools import mlir_pytaco_api as pt
|
|
from tools import testing_utils as utils
|
|
|
|
i, j, k = pt.get_index_vars(3)
|
|
|
|
# Set up dense matrices.
|
|
A = pt.from_array(np.full((8, 8), 2.0, dtype=np.float32))
|
|
B = pt.from_array(np.full((8, 8), 3.0, dtype=np.float32))
|
|
|
|
# Set up sparse matrices.
|
|
S = pt.tensor([8, 8], pt.format([pt.compressed, pt.compressed]))
|
|
X = pt.tensor([8, 8], pt.format([pt.compressed, pt.compressed]))
|
|
Y = pt.tensor([8, 8], pt.compressed) # alternative syntax works too
|
|
|
|
S.insert([0, 7], 42.0)
|
|
|
|
# Define the SDDMM kernel. Since this performs the reduction as
|
|
# sum(k, S[i, j] * A[i, k] * B[k, j])
|
|
# we only compute the intermediate dense matrix product that are actually
|
|
# needed to compute the result, with proper asymptotic complexity.
|
|
X[i, j] = S[i, j] * A[i, k] * B[k, j]
|
|
|
|
# Alternative way to define SDDMM kernel. Since this performs the reduction as
|
|
# sum(k, A[i, k] * B[k, j]) * S[i, j]
|
|
# the MLIR lowering results in two separate tensor index expressions that are
|
|
# fused prior to running the sparse compiler in order to guarantee proper
|
|
# asymptotic complexity.
|
|
Y[i, j] = A[i, k] * B[k, j] * S[i, j]
|
|
|
|
expected = """; extended FROSTT format
|
|
2 1
|
|
8 8
|
|
1 8 2016
|
|
"""
|
|
|
|
# Force evaluation of the kernels by writing out X and Y.
|
|
with tempfile.TemporaryDirectory() as test_dir:
|
|
x_file = os.path.join(test_dir, "X.tns")
|
|
y_file = os.path.join(test_dir, "Y.tns")
|
|
pt.write(x_file, X)
|
|
pt.write(y_file, Y)
|
|
#
|
|
# CHECK: Compare result True True
|
|
#
|
|
x_data = utils.file_as_string(x_file)
|
|
y_data = utils.file_as_string(y_file)
|
|
print(f"Compare result {x_data == expected} {y_data == expected}")
|