This commit moves FuncOp out of the builtin dialect, and into the Func dialect. This move has been planned in some capacity from the moment we made FuncOp an operation (years ago). This commit handles the functional aspects of the move, but various aspects are left untouched to ease migration: func::FuncOp is re-exported into mlir to reduce the actual API churn, the assembly format still accepts the unqualified `func`. These temporary measures will remain for a little while to simplify migration before being removed. Differential Revision: https://reviews.llvm.org/D121266
140 lines
5.2 KiB
Python
140 lines
5.2 KiB
Python
# RUN: %PYTHON %s | FileCheck %s
|
|
|
|
from mlir.ir import *
|
|
from mlir.dialects import builtin
|
|
from mlir.dialects import func
|
|
from mlir.dialects import linalg
|
|
|
|
from mlir.dialects.linalg.opdsl.lang import *
|
|
|
|
T1 = TV.T1
|
|
T2 = TV.T2
|
|
|
|
|
|
@linalg_structured_op
|
|
def pooling_poly(
|
|
I=TensorDef(T1, S.N, S.H, S.W, S.C),
|
|
K=TensorDef(T2, S.KH, S.KW, index_dims=[D.kh, D.kw]),
|
|
O=TensorDef(U, S.N, S.OH, S.OW, S.C, output=True),
|
|
reduce=BinaryFnAttrDef(default=BinaryFn.max_signed),
|
|
cast=TypeFnAttrDef(default=TypeFn.cast_signed),
|
|
strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]),
|
|
dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1])):
|
|
domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
|
|
O[D.n, D.oh, D.ow, D.c] = reduce[D.kh, D.kw](
|
|
cast(U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
|
|
D.c]))
|
|
|
|
|
|
with Context() as ctx, Location.unknown():
|
|
module = Module.create()
|
|
f32 = F32Type.get()
|
|
i32 = IntegerType.get_signless(32)
|
|
with InsertionPoint(module.body):
|
|
|
|
# Pooling indexing maps.
|
|
# CHECK: #[[$POOL_MAP_I:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1 * 2 + d3, d2 * 4 + d4 * 2, d5)>
|
|
# CHECK: #[[$POOL_MAP_K:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d3, d4)>
|
|
# CHECK: #[[$POOL_MAP_O:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d5)>
|
|
|
|
# CHECK-LABEL: @test_f32i32_max_pooling
|
|
# CHECK: linalg.generic
|
|
# CHECK-SAME: indexing_maps = [#[[$POOL_MAP_I]], #[[$POOL_MAP_K]], #[[$POOL_MAP_O]]]
|
|
# CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction", "parallel"]
|
|
# CHECK: ^{{.*}}(%[[IN:.+]]: f32, %[[SHAPE:.+]]: f32, %[[OUT:.+]]: i32)
|
|
# CHECK-NEXT: %[[IN_CAST:.+]] = arith.fptosi %[[IN:.+]] : f32 to i32
|
|
# CHECK-NEXT: %[[MAX:.+]] = arith.maxsi %[[OUT]], %[[IN_CAST:.+]] : i32
|
|
# CHECK-NEXT: linalg.yield %[[MAX]] : i32
|
|
# CHECK-NEXT: -> tensor<1x2x4x1xi32>
|
|
@func.FuncOp.from_py_func(
|
|
RankedTensorType.get((1, 4, 16, 1), f32),
|
|
RankedTensorType.get((2, 2), f32),
|
|
RankedTensorType.get((1, 2, 4, 1), i32))
|
|
def test_f32i32_max_pooling(input, shape, init_result):
|
|
return pooling_poly(
|
|
input, shape, outs=[init_result], strides=[2, 4], dilations=[1, 2])
|
|
|
|
# CHECK-LABEL: @test_f32i32_max_unsigned_pooling
|
|
# CHECK: = arith.fptoui
|
|
# CHECK: = arith.maxui
|
|
@func.FuncOp.from_py_func(
|
|
RankedTensorType.get((1, 4, 16, 1), f32),
|
|
RankedTensorType.get((2, 2), f32),
|
|
RankedTensorType.get((1, 2, 4, 1), i32))
|
|
def test_f32i32_max_unsigned_pooling(input, shape, init_result):
|
|
return pooling_poly(
|
|
input,
|
|
shape,
|
|
outs=[init_result],
|
|
reduce=BinaryFn.max_unsigned,
|
|
cast=TypeFn.cast_unsigned,
|
|
strides=[2, 4],
|
|
dilations=[1, 2])
|
|
|
|
# CHECK-LABEL: @test_f32f32_max_pooling
|
|
# CHECK: linalg.generic
|
|
# CHECK-SAME: indexing_maps = [#[[$POOL_MAP_I]], #[[$POOL_MAP_K]], #[[$POOL_MAP_O]]]
|
|
# CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction", "parallel"]
|
|
# CHECK: ^{{.*}}(%[[IN:.+]]: f32, %[[SHAPE:.+]]: f32, %[[OUT:.+]]: f32)
|
|
# CHECK-NEXT: %[[MAX:.+]] = arith.maxf %[[OUT]], %[[IN:.+]] : f32
|
|
# CHECK-NEXT: linalg.yield %[[MAX]] : f32
|
|
# CHECK-NEXT: -> tensor<1x2x4x1xf32>
|
|
@func.FuncOp.from_py_func(
|
|
RankedTensorType.get((1, 4, 16, 1), f32),
|
|
RankedTensorType.get((2, 2), f32),
|
|
RankedTensorType.get((1, 2, 4, 1), f32))
|
|
def test_f32f32_max_pooling(input, shape, init_result):
|
|
return pooling_poly(
|
|
input, shape, outs=[init_result], strides=[2, 4], dilations=[1, 2])
|
|
|
|
# CHECK-LABEL: @test_f32i32_min_pooling
|
|
# CHECK: = arith.fptosi
|
|
# CHECK: = arith.minsi
|
|
@func.FuncOp.from_py_func(
|
|
RankedTensorType.get((1, 4, 16, 1), f32),
|
|
RankedTensorType.get((2, 2), f32),
|
|
RankedTensorType.get((1, 2, 4, 1), i32))
|
|
def test_f32i32_min_pooling(input, shape, init_result):
|
|
return pooling_poly(
|
|
input,
|
|
shape,
|
|
outs=[init_result],
|
|
reduce=BinaryFn.min_signed,
|
|
strides=[2, 4],
|
|
dilations=[1, 2])
|
|
|
|
# CHECK-LABEL: @test_f32i32_min_unsigned_pooling
|
|
# CHECK: = arith.fptoui
|
|
# CHECK: = arith.minui
|
|
@func.FuncOp.from_py_func(
|
|
RankedTensorType.get((1, 4, 16, 1), f32),
|
|
RankedTensorType.get((2, 2), f32),
|
|
RankedTensorType.get((1, 2, 4, 1), i32))
|
|
def test_f32i32_min_unsigned_pooling(input, shape, init_result):
|
|
return pooling_poly(
|
|
input,
|
|
shape,
|
|
outs=[init_result],
|
|
reduce=BinaryFn.min_unsigned,
|
|
cast=TypeFn.cast_unsigned,
|
|
strides=[2, 4],
|
|
dilations=[1, 2])
|
|
|
|
# CHECK-LABEL: @test_f32f32_min_pooling
|
|
# CHECK: = arith.minf
|
|
@func.FuncOp.from_py_func(
|
|
RankedTensorType.get((1, 4, 16, 1), f32),
|
|
RankedTensorType.get((2, 2), f32),
|
|
RankedTensorType.get((1, 2, 4, 1), f32))
|
|
def test_f32f32_min_pooling(input, shape, init_result):
|
|
return pooling_poly(
|
|
input,
|
|
shape,
|
|
outs=[init_result],
|
|
reduce=BinaryFn.min_signed,
|
|
strides=[2, 4],
|
|
dilations=[1, 2])
|
|
|
|
|
|
print(module)
|