Files
clang-p2996/mlir/lib/Dialect/Linalg/Transforms/Tiling.cpp
Nicolas Vasilache 05d5125d8a [mlir] Generalize OpFoldResult usage in ops with offsets, sizes and operands.
This revision starts evolving the APIs to manipulate ops with offsets, sizes and operands towards a ValueOrAttr abstraction that is already used in folding under the name OpFoldResult.

The objective, in the future, is to allow such manipulations all the way to the level of ODS to avoid all the genuflexions involved in distinguishing between values and attributes for generic constant foldings.

Once this evolution is accepted, the next step will be a mechanical OpFoldResult -> ValueOrAttr.

Differential Revision: https://reviews.llvm.org/D95310
2021-01-25 14:17:03 +00:00

633 lines
25 KiB
C++

//===- Tiling.cpp - Implementation of linalg Tiling -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the linalg dialect Tiling pass.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Affine/EDSC/Intrinsics.h"
#include "mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/SCF/EDSC/Builders.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/Support/CommandLine.h"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::linalg;
using namespace mlir::scf;
#define DEBUG_TYPE "linalg-tiling"
static bool isZero(Value v) {
if (auto cst = v.getDefiningOp<ConstantIndexOp>())
return cst.getValue() == 0;
return false;
}
using LoopIndexToRangeIndexMap = DenseMap<int, int>;
// Creates a number of ranges equal to the number of non-zero in `tileSizes`.
// One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has
// one entry per surrounding loop. It uses zero as the convention that a
// particular loop is not tiled. This convention simplifies implementations by
// avoiding affine map manipulations.
// The returned ranges correspond to the loop ranges, in the proper order, that
// are tiled and for which new loops will be created. Also the function returns
// a map from loop indices of the LinalgOp to the corresponding non-empty range
// indices of newly created loops.
static std::tuple<SmallVector<Range, 4>, LoopIndexToRangeIndexMap>
makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map,
ValueRange allShapeSizes, ValueRange allTileSizes) {
assert(allTileSizes.size() == map.getNumResults());
// Apply `map` to get shape sizes in loop order.
auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes);
SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end());
// Traverse the tile sizes, which are in loop order, erase zeros everywhere.
LoopIndexToRangeIndexMap loopIndexToRangeIndex;
for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) {
if (isZero(tileSizes[idx - zerosCount])) {
shapeSizes.erase(shapeSizes.begin() + idx - zerosCount);
tileSizes.erase(tileSizes.begin() + idx - zerosCount);
++zerosCount;
continue;
}
loopIndexToRangeIndex[idx] = idx - zerosCount;
}
// Create a new range with the applied tile sizes.
SmallVector<Range, 4> res;
for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx)
res.push_back(
Range{std_constant_index(0), shapeSizes[idx], tileSizes[idx]});
return std::make_tuple(res, loopIndexToRangeIndex);
}
namespace {
// Helper visitor to determine whether an AffineExpr is tiled.
// This is achieved by traversing every AffineDimExpr with position `pos` and
// checking whether the corresponding `tileSizes[pos]` is non-zero.
// This also enforces only positive coefficients occur in multiplications.
//
// Example:
// `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0]
//
struct TileCheck : public AffineExprVisitor<TileCheck> {
TileCheck(ValueRange tileSizes) : isTiled(false), tileSizes(tileSizes) {}
void visitDimExpr(AffineDimExpr expr) {
isTiled |= !isZero(tileSizes[expr.getPosition()]);
}
void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) {
visit(expr.getLHS());
visit(expr.getRHS());
if (expr.getKind() == mlir::AffineExprKind::Mul)
assert(expr.getRHS().cast<AffineConstantExpr>().getValue() > 0 &&
"nonpositive multiplying coefficient");
}
bool isTiled;
ValueRange tileSizes;
};
} // namespace
// IndexedGenericOp explicitly uses induction variables in the loop body. The
// values of the indices that are used in the loop body for any given access of
// input/output memref before `subview` op was applied should be invariant with
// respect to tiling.
//
// Therefore, if the operation is tiled, we have to transform the indices
// accordingly, i.e. offset them by the values of the corresponding induction
// variables that are captured implicitly in the body of the op.
//
// Example. `linalg.indexed_generic` before tiling:
//
// #id_2d = (i, j) -> (i, j)
// #pointwise_2d_trait = {
// indexing_maps = [#id_2d, #id_2d],
// iterator_types = ["parallel", "parallel"],
// n_views = [1, 1]
// }
// linalg.indexed_generic #pointwise_2d_trait %operand, %result {
// ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32):
// <some operations that use %i, %j>
// }: memref<50x100xf32>, memref<50x100xf32>
//
// After tiling pass with tiles sizes 10 and 25:
//
// #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2)
//
// %c1 = constant 1 : index
// %c0 = constant 0 : index
// %c25 = constant 25 : index
// %c10 = constant 10 : index
// operand_dim_0 = dim %operand, 0 : memref<50x100xf32>
// operand_dim_1 = dim %operand, 1 : memref<50x100xf32>
// scf.for %k = %c0 to operand_dim_0 step %c10 {
// scf.for %l = %c0 to operand_dim_1 step %c25 {
// %4 = std.subview %operand[%k, %l][%c10, %c25][%c1, %c1]
// : memref<50x100xf32> to memref<?x?xf32, #strided>
// %5 = std.subview %result[%k, %l][%c10, %c25][%c1, %c1]
// : memref<50x100xf32> to memref<?x?xf32, #strided>
// linalg.indexed_generic pointwise_2d_trait %4, %5 {
// ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32):
// // Indices `k` and `l` are implicitly captured in the body.
// %transformed_i = addi %i, %k : index // index `i` is offset by %k
// %transformed_j = addi %j, %l : index // index `j` is offset by %l
// // Every use of %i, %j is replaced with %transformed_i, %transformed_j
// <some operations that use %transformed_i, %transformed_j>
// }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided>
// }
// }
//
// TODO: Investigate whether mixing implicit and explicit indices
// does not lead to losing information.
static void transformIndexedGenericOpIndices(
OpBuilder &b, LinalgOp op, SmallVectorImpl<Value> &ivs,
const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) {
auto indexedGenericOp = dyn_cast<IndexedGenericOp>(op.getOperation());
if (!indexedGenericOp)
return;
// `linalg.indexed_generic` comes in two flavours. One has a region with a
// single block that defines the loop body. The other has a `fun` attribute
// that refers to an existing function symbol. The `fun` function call will be
// inserted in the loop body in that case.
//
// TODO: Add support for `linalg.indexed_generic` with `fun` attribute.
auto &region = indexedGenericOp.region();
if (region.empty()) {
indexedGenericOp.emitOpError("expected a region");
return;
}
auto &block = region.front();
OpBuilder::InsertionGuard g(b);
b.setInsertionPointToStart(&block);
for (unsigned i = 0; i < indexedGenericOp.getNumLoops(); ++i) {
auto rangeIndex = loopIndexToRangeIndex.find(i);
if (rangeIndex == loopIndexToRangeIndex.end())
continue;
Value oldIndex = block.getArgument(i);
// Offset the index argument `i` by the value of the corresponding induction
// variable and replace all uses of the previous value.
Value newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex,
ivs[rangeIndex->second]);
for (auto &use : oldIndex.getUses()) {
if (use.getOwner() == newIndex.getDefiningOp())
continue;
use.set(newIndex);
}
}
}
static bool isTiled(AffineExpr expr, ValueRange tileSizes) {
if (!expr)
return false;
TileCheck t(tileSizes);
t.visit(expr);
return t.isTiled;
}
// Checks whether the `map varies with respect to a non-zero `tileSize`.
static bool isTiled(AffineMap map, ValueRange tileSizes) {
if (!map)
return false;
for (unsigned r = 0; r < map.getNumResults(); ++r)
if (isTiled(map.getResult(r), tileSizes))
return true;
return false;
}
static SmallVector<Value, 4>
makeTiledShapes(OpBuilder &b, Location loc, LinalgOp linalgOp,
ArrayRef<Value> tiledOperands, AffineMap map, ValueRange ivs,
ValueRange tileSizes, ValueRange allShapeSizes) {
assert(ivs.size() == static_cast<size_t>(llvm::count_if(
llvm::make_range(tileSizes.begin(), tileSizes.end()),
[](Value v) { return !isZero(v); })) &&
"expected as many ivs as non-zero sizes");
using namespace edsc::op;
auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes);
// Construct (potentially temporary) mins and maxes on which to apply maps
// that define tile subshapes.
SmallVector<Value, 8> lbs, subShapeSizes;
for (unsigned idx = 0, idxIvs = 0, e = tileSizes.size(); idx < e; ++idx) {
bool isTiled = !isZero(tileSizes[idx]);
lbs.push_back(isTiled ? ivs[idxIvs++] : (Value)std_constant_index(0));
// Before composing, we need to make range a closed interval.
Value size = isTiled ? tileSizes[idx] : shapeSizes[idx];
subShapeSizes.push_back(size - std_constant_index(1));
}
SmallVector<Value, 4> res;
res.reserve(tiledOperands.size());
for (auto en : llvm::enumerate(tiledOperands)) {
Value shapedOp = en.value();
ShapedType shapedType = shapedOp.getType().cast<ShapedType>();
unsigned rank = shapedType.getRank();
AffineMap map = linalgOp.getIndexingMap(en.index());
// If the shape is not tiled, we can use it as is.
if (!isTiled(map, tileSizes)) {
res.push_back(shapedOp);
continue;
}
// Construct a new subview / subtensor for the tile.
SmallVector<OpFoldResult, 4> offsets, sizes, strides;
offsets.reserve(rank);
sizes.reserve(rank);
strides.reserve(rank);
for (unsigned r = 0; r < rank; ++r) {
if (!isTiled(map.getSubMap({r}), tileSizes)) {
offsets.push_back(b.getIndexAttr(0));
sizes.push_back(std_dim(shapedOp, r).value);
strides.push_back(b.getIndexAttr(1));
continue;
}
// Tiling creates a new slice at the proper index, the slice step is 1
// (i.e. the op does not subsample, stepping occurs in the loop).
auto m = map.getSubMap({r});
auto offset = applyMapToValues(b, loc, m, lbs).front();
offsets.push_back(offset);
auto closedIntSize = applyMapToValues(b, loc, m, subShapeSizes).front();
// Resulting size needs to be made half open interval again.
auto size = closedIntSize + std_constant_index(1);
// The size of the subview / subtensor should be trimmed to avoid
// out-of-bounds accesses, unless we statically know the subshape size
// divides the shape size evenly.
int64_t shapeSize = shapedType.getDimSize(r);
auto sizeCst = size.getDefiningOp<ConstantIndexOp>();
if (ShapedType::isDynamic(shapeSize) || !sizeCst ||
(shapeSize % sizeCst.getValue()) != 0) {
// Compute min(size, dim - offset) to avoid out-of-bounds accesses.
auto minMap = AffineMap::get(
/*dimCount=*/3, /*symbolCount=*/0,
{getAffineDimExpr(/*position=*/0, b.getContext()),
getAffineDimExpr(/*position=*/1, b.getContext()) -
getAffineDimExpr(/*position=*/2, b.getContext())},
b.getContext());
auto d = std_dim(shapedOp, r);
SmallVector<Value, 4> operands{size, d, offset};
fullyComposeAffineMapAndOperands(&minMap, &operands);
size = affine_min(b.getIndexType(), minMap, operands);
}
sizes.push_back(size);
strides.push_back(b.getIndexAttr(1));
}
if (shapedType.isa<MemRefType>())
res.push_back(
b.create<SubViewOp>(loc, shapedOp, offsets, sizes, strides));
else
res.push_back(
b.create<SubTensorOp>(loc, shapedOp, offsets, sizes, strides));
}
return res;
}
template <typename LoopTy>
static Optional<TiledLinalgOp>
tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ValueRange tileSizes,
const LinalgTilingOptions &options) {
auto nLoops = op.getNumLoops();
// Initial tile sizes may be too big, only take the first nLoops.
tileSizes = tileSizes.take_front(nLoops);
if (llvm::all_of(tileSizes, isZero))
return llvm::None;
if (auto convOp = dyn_cast<linalg::ConvOp>(op.getOperation())) {
// For conv op only support tiling along batch dimension (which is the first
// loop).
if (convOp.padding() && !llvm::all_of(tileSizes.drop_front(), isZero))
return llvm::None;
}
// 1. Build the tiled loop ranges.
auto allShapeSizes = op.createFlatListOfOperandDims(b, op.getLoc());
AffineMap shapeSizesToLoopsMap = op.getShapesToLoopsMap();
if (!shapeSizesToLoopsMap)
return llvm::None;
SmallVector<Range, 4> loopRanges;
LoopIndexToRangeIndexMap loopIndexToRangeIndex;
std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges(
b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes);
SmallVector<Attribute, 4> iteratorTypes;
for (auto attr :
enumerate(op.iterator_types().cast<ArrayAttr>().getValue())) {
if (loopIndexToRangeIndex.count(attr.index()))
iteratorTypes.push_back(attr.value());
}
// If interchangeVector is empty, use the identity. Build the permutation map
// otherwise.
auto invPermutationMap =
AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext());
if (!options.interchangeVector.empty()) {
// Based on the pruned iterations (due to zero tile size), recompute the
// interchange vector.
SmallVector<unsigned, 4> interchangeVector;
interchangeVector.reserve(options.interchangeVector.size());
for (auto pos : options.interchangeVector) {
auto it = loopIndexToRangeIndex.find(pos);
if (it == loopIndexToRangeIndex.end())
continue;
interchangeVector.push_back(it->second);
}
// Interchange vector is guaranteed to be a permutation,
// `inversePermutation` must succeed.
invPermutationMap = inversePermutation(
AffineMap::getPermutationMap(interchangeVector, b.getContext()));
assert(invPermutationMap);
applyPermutationToVector(loopRanges, interchangeVector);
applyPermutationToVector(iteratorTypes, interchangeVector);
}
// 2. Create the tiled loops.
LinalgOp res = op;
SmallVector<Value, 4> ivs, tensorResults;
auto outputTensors = op.getOutputTensors();
GenerateLoopNest<LoopTy>::doit(
loopRanges, /*iterArgInitValues*/ outputTensors, iteratorTypes,
[&](ValueRange localIvs, ValueRange iterArgs) -> scf::ValueVector {
auto &b = ScopedContext::getBuilderRef();
auto loc = ScopedContext::getLocation();
ivs.assign(localIvs.begin(), localIvs.end());
// When an `interchangeVector` is present, it has been applied to the
// loop ranges and the iterator types. Apply its inverse to the
// resulting loop `ivs` to match the op definition.
SmallVector<Value, 4> interchangedIvs;
if (!options.interchangeVector.empty())
interchangedIvs = applyMapToValues(b, loc, invPermutationMap, ivs);
else
interchangedIvs.assign(ivs.begin(), ivs.end());
assert(op.getNumOutputTensors() == iterArgs.size() &&
"num output tensors must match number of loop iter arguments");
auto operands = llvm::to_vector<4>(op.getInputs());
SmallVector<Value, 4> outputBuffers = op.getOutputBuffers();
// TODO: thanks to simplifying assumption we do not need to worry about
// order of output buffers and tensors: there is only ever one kind.
assert(outputBuffers.empty() || iterArgs.empty());
operands.append(outputBuffers.begin(), outputBuffers.end());
operands.append(iterArgs.begin(), iterArgs.end());
SmallVector<Value, 4> tiledOperands =
makeTiledShapes(b, loc, op, operands, shapeSizesToLoopsMap,
interchangedIvs, tileSizes, allShapeSizes);
auto nonShapedOperands = op.getAssumedNonShapedOperands();
tiledOperands.append(nonShapedOperands.begin(),
nonShapedOperands.end());
// TODO: use an interface/adaptor to avoid leaking position in
// `tiledOperands`.
SmallVector<Type, 4> resultTensorTypes;
for (OpOperand *opOperand : op.getOutputTensorsOpOperands())
resultTensorTypes.push_back(
tiledOperands[opOperand->getOperandNumber()].getType());
res = op.clone(b, loc, resultTensorTypes, tiledOperands);
// Insert a subtensor_insert for each output tensor.
unsigned resultIdx = 0;
for (OpOperand *opOperand : op.getOutputTensorsOpOperands()) {
// TODO: use an interface/adaptor to avoid leaking position in
// `tiledOperands`.
Value outputTensor = tiledOperands[opOperand->getOperandNumber()];
if (auto subtensor = outputTensor.getDefiningOp<SubTensorOp>()) {
tensorResults.push_back(b.create<SubTensorInsertOp>(
loc, subtensor.source().getType(), res->getResult(resultIdx),
subtensor.source(), subtensor.offsets(), subtensor.sizes(),
subtensor.strides(), subtensor.static_offsets(),
subtensor.static_sizes(), subtensor.static_strides()));
} else {
tensorResults.push_back(res->getResult(resultIdx));
}
++resultIdx;
}
return scf::ValueVector(tensorResults.begin(), tensorResults.end());
},
options.distribution);
// 3. Transforms index arguments of `linalg.generic` w.r.t. to the tiling.
transformIndexedGenericOpIndices(b, res, ivs, loopIndexToRangeIndex);
// 4. Gather the newly created loops and return them with the new op.
SmallVector<Operation *, 8> loops;
loops.reserve(ivs.size());
for (auto iv : ivs) {
if (iv.isa<BlockArgument>()) {
loops.push_back(iv.cast<BlockArgument>().getOwner()->getParentOp());
assert(loops.back() && "no owner found for induction variable!");
} else {
// TODO: Instead of doing this, try to recover the ops used instead of the
// loop.
loops.push_back(nullptr);
}
}
// 5. Get the tensor results from the outermost loop if available. Otherwise
// use the previously captured `tensorResults`.
Operation *outermostLoop = nullptr;
for (Operation *loop : loops)
if ((outermostLoop = loop))
break;
return TiledLinalgOp{
res, loops, outermostLoop ? outermostLoop->getResults() : tensorResults};
}
template <typename LoopTy>
Optional<TiledLinalgOp> static tileLinalgOpImpl(
OpBuilder &b, LinalgOp op, const LinalgTilingOptions &options) {
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(op);
ScopedContext scope(b, op.getLoc());
// Enforce the convention that "tiling by zero" skips tiling a particular
// dimension. This convention is significantly simpler to handle instead of
// adjusting affine maps to account for missing dimensions.
auto nLoops = op.getNumLoops();
SmallVector<Value, 4> tileSizeVector =
options.tileSizeComputationFunction(b, op);
if (tileSizeVector.size() < nLoops) {
auto zero = std_constant_index(0);
tileSizeVector.append(nLoops - tileSizeVector.size(), zero);
}
return tileLinalgOpImpl<LoopTy>(b, op, tileSizeVector, options);
}
Optional<TiledLinalgOp>
mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op,
const LinalgTilingOptions &options) {
switch (options.loopType) {
case LinalgTilingLoopType::Loops:
return tileLinalgOpImpl<scf::ForOp>(b, op, options);
case LinalgTilingLoopType::ParallelLoops:
return tileLinalgOpImpl<scf::ParallelOp>(b, op, options);
default:;
}
return llvm::None;
}
namespace {
/// Helper classes for type list expansion.
template <typename... OpTypes>
class CanonicalizationPatternList;
template <>
class CanonicalizationPatternList<> {
public:
static void insert(OwningRewritePatternList &patterns, MLIRContext *ctx) {}
};
template <typename OpTy, typename... OpTypes>
class CanonicalizationPatternList<OpTy, OpTypes...> {
public:
static void insert(OwningRewritePatternList &patterns, MLIRContext *ctx) {
OpTy::getCanonicalizationPatterns(patterns, ctx);
CanonicalizationPatternList<OpTypes...>::insert(patterns, ctx);
}
};
/// Helper classes for type list expansion.
template <typename... OpTypes>
class RewritePatternList;
template <>
class RewritePatternList<> {
public:
static void insert(OwningRewritePatternList &patterns,
const LinalgTilingOptions &options, MLIRContext *ctx) {}
};
template <typename OpTy, typename... OpTypes>
class RewritePatternList<OpTy, OpTypes...> {
public:
static void insert(OwningRewritePatternList &patterns,
const LinalgTilingOptions &options, MLIRContext *ctx) {
patterns.insert<LinalgTilingPattern<OpTy>>(
ctx, options, LinalgMarker({}, Identifier::get("tiled", ctx)));
RewritePatternList<OpTypes...>::insert(patterns, options, ctx);
}
};
} // namespace
OwningRewritePatternList
mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) {
OwningRewritePatternList patterns;
populateLinalgTilingCanonicalizationPatterns(patterns, ctx);
return patterns;
}
void mlir::linalg::populateLinalgTilingCanonicalizationPatterns(
OwningRewritePatternList &patterns, MLIRContext *ctx) {
AffineApplyOp::getCanonicalizationPatterns(patterns, ctx);
AffineForOp::getCanonicalizationPatterns(patterns, ctx);
AffineMinOp::getCanonicalizationPatterns(patterns, ctx);
AffineMaxOp::getCanonicalizationPatterns(patterns, ctx);
scf::ForOp::getCanonicalizationPatterns(patterns, ctx);
scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx);
ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx);
SubTensorOp::getCanonicalizationPatterns(patterns, ctx);
SubViewOp::getCanonicalizationPatterns(patterns, ctx);
tensor::CastOp::getCanonicalizationPatterns(patterns, ctx);
ViewOp::getCanonicalizationPatterns(patterns, ctx);
CanonicalizationPatternList<
#define GET_OP_LIST
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
>::insert(patterns, ctx);
}
/// Populate the given list with patterns that apply Linalg tiling.
static void insertTilingPatterns(OwningRewritePatternList &patterns,
const LinalgTilingOptions &options,
MLIRContext *ctx) {
RewritePatternList<GenericOp, IndexedGenericOp,
#define GET_OP_LIST
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
>::insert(patterns, options, ctx);
}
static void applyTilingToLoopPatterns(LinalgTilingLoopType loopType,
FuncOp funcOp,
ArrayRef<int64_t> tileSizes) {
auto options =
LinalgTilingOptions().setTileSizes(tileSizes).setLoopType(loopType);
MLIRContext *ctx = funcOp.getContext();
OwningRewritePatternList patterns;
insertTilingPatterns(patterns, options, ctx);
applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
applyPatternsAndFoldGreedily(funcOp,
getLinalgTilingCanonicalizationPatterns(ctx));
// Drop the marker.
funcOp.walk([](LinalgOp op) {
op.removeAttr(LinalgTransforms::kLinalgTransformMarker);
});
}
namespace {
struct LinalgTilingPass : public LinalgTilingBase<LinalgTilingPass> {
LinalgTilingPass() = default;
LinalgTilingPass(ArrayRef<int64_t> sizes) { tileSizes = sizes; }
void runOnFunction() override {
applyTilingToLoopPatterns(LinalgTilingLoopType::Loops, getFunction(),
tileSizes);
}
};
struct LinalgTilingToParallelLoopsPass
: public LinalgTilingToParallelLoopsBase<LinalgTilingToParallelLoopsPass> {
LinalgTilingToParallelLoopsPass() = default;
LinalgTilingToParallelLoopsPass(ArrayRef<int64_t> sizes) {
tileSizes = sizes;
}
void runOnFunction() override {
applyTilingToLoopPatterns(LinalgTilingLoopType::ParallelLoops,
getFunction(), tileSizes);
}
};
} // namespace
std::unique_ptr<OperationPass<FuncOp>>
mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes) {
return std::make_unique<LinalgTilingPass>(tileSizes);
}
std::unique_ptr<OperationPass<FuncOp>>
mlir::createLinalgTilingToParallelLoopsPass(ArrayRef<int64_t> tileSizes) {
return std::make_unique<LinalgTilingToParallelLoopsPass>(tileSizes);
}